
1

Coordination Language
(illustrated with Java)

Benjamin Hadorn
PAI research group, University of Fribourg

26.02.2010



2

Overview
Generic Coordination Model

Coordination Model for 
Computer Science

«extends»

Coordination Language

Coordination Library for Java

Pervasive Computing

Multi Agent System

Social Network 
Applications

«uses»

«uses»

«uses»

«uses»

«uses»
Model

Languages

Implementations

Coordination Model 
for Social Science

«extends»

...

«extends»



3

Architecture of Middleware for 
Pervasive Computing

uMove
(entity space and 

context management)
Coordination

Human Computer Interaction

Monitoring 
and 

Communication Space

– Java Package extending the computational part of the 
middleware by coordination 



4

uMove: Representation of the World

Situation
Manager

Activity
Manager Context

Manager

Entity Space 

Sensor 1 Sensor 2 Sensor 3 Sensor n...

Sendget 1 Sendget 2 Sendget 3 Sendget n

View 1 View 2

Observer 1 Observer 2 Observer 3

O
bs

er
va

tio
n 

La
ye

r
E

nt
ity

 L
ay

er
S

en
so

r L
ay

er

KUI 
Service



5

Entities
● Entities are described by

– Identity: unique ID (UUID), Name, RFID Tag, etc.
– Context: Sensor values, location
– Motion and Activity

● There exist different types:
– Actor: observed entities of the physical world
– Observer: Software observer looking at a part of the 

world
– Viewer: Software filter used
– Sendget: Sensor entity
– Group: virtual entity used to group physical entities 



6

Ports (I)
● Ports are described by a port descriptor:

– ID and Name
– Orientation (input, output or inout)
– Synchronisation type (asynchron or synchron)
– Delivery Protocol (FIFO, causal order, total order, ...)
– Public flag (visible for others)
– Address



7

Ports (II)
● An entity can access the communication channel 

only through ports
– write: The sender puts a message into the channel. The 

port must have output access.
– read: The receiver reads a message from the channel. 

The port must have input access.

Port

Entity

Port

Entityread()

Sender Receiver

write() send receive

Channel
msg

msg
msg



8

Ports (III)
● Interface IPort 

– open: connects the port to a communication channel
– close: disconnects the port from the channel
– peek: gets a message from the channel without removing 

it
– read and readBlocked: consumes a message from the 

channel
– write: puts a message to the channel

● InputPort, OutputPort and InOutPort classes 
implement asynchronous port behavior



9

Services and Public Ports (I)
● Service: The service is a special entity providing a 

functionality or information to the world
– one way communication: reading or writing only
– two way communication: exchaning information, 

querying, interaction
● Public ports are accessible from outside (external 

systems)
– Service Provider: The service provider port is used to 

provide services to entities
– Service Session: Once connected to the service provider 

each entity is treated in a private session.
– Service Client: Port on the client side



10

Services and Public Ports (II)
– 1.) requesting the access to service through public port
– 2.) if client is accepted a private session is created. 
– 3.) the private session manages the access between 

client and service

Service
Provider

Service
Session

1. Request a service

2. Creates a session

3. Communication

Service
Object

Service

Service
Client



11

Ports: Classdiagram
● Implementation

AbstractPort

+attachMonitor(Zoll pMonitor : IPortMonitor)
+detachMonitor(Zoll pMonitor : IPortMonitor)
+close()
+open(Zoll pChannel : ICommSpace)
+read() : IMessage
+readBlocked() : IMessage
+write(Zoll pMsg : IMessage)
+peek() : IMessage

«Schnittstelle»IPort

AbstractEntity

«uses»

+getEntityID() : UUID
+getEntityName(Zoll pMsg : IMessage) : String
+getParentEntity() : IEntity

«Schnittstelle»
IEntity

InputPort InOutPort OutputPort



12

Coordination Component (I)

Entity
Registry

Connection 
couplings

Port MatchingRule 
Evaluation

Service 
Registry

Coordination API (CM)

Coordination 
Actions

● API for explicit coordination
– port matching algorithm
– rule evaluation
– set of coordination actions



13

Coordination Component (II)
● The Coordination Manager is used to 

– register all available entities and ports
– maintain the current connected port (port couplings)
– clean and remove wasted channels

● The entity space observer is able to detect situation 
changes of entities within a system
– evaluates the situation against rules
– takes actions like

● creating new channels between entities
● disconnecting existing channels
● providing or hiding services



14

Message Passing
● The communication between entities is realized 

with message passing technique
– Transparent for local and remote communication
– sending through permanent channel

● a channel is installed permanently between two entities
– or sending through temporary channel (like e-mail)

● a message is addresses for different recipients. To each recipient 
a temporary channel is opened. As soon as the recipient takes 
the message the channel is closed.



15

Message Passing Protocol (I)
● Basic construct is of transmission is a message 

object
– Header: contains Message ID, Sender ID, Receiver IDs, 

logical timestamp, properties
– Body: each concrete message implementation 

implements its own body
● TextMessage: String message
● ObjectMessage: Streamed object
● ...

● A message is sent from one sender to one or many 
recipients



16

Message Passing Protocol (II)
● On top of the message protocol, application specific 

protocols can be defined

+clearBody()
+clearProperties()
+getPropertyValue(Zoll strName : string) : String
+getRecipient() : UUID
+getSender() : UUID
+getTimeStamp() : uint
+setPropertyValue(Zoll strName : string, Zoll strValue : string)
+setRecipient(Zoll pID : UUID)
+setSender(Zoll pID : UUID)

«Schnittstelle»
IMessage

AbstractMessage

ServiceMessageTextMessage ObjectMessage ...



17

Rules
● Rules are used to

– Check if an activity is allowed in a place
– evaluate situations of entities
– coordinate the interaction between two or more entities

● 3 different rules
– activity rules 
– situation rules 
– social rules



18

Activity rules
● If an activity is recognized 

– the activity status is checked
– the activity rules are attached to the place entity

● Activity lists
– forbidden: not allowed activities.
– accepted: approtiated activities.
– everything else is negotiable.

Set of all possible activities

Forbidden 
Activity List

Accepted
Activity List



19

Situation rules
● Situation of each entity is treated in dedicated 

situation analysis
– Situation Manager are attached to software observer
– At each context, activity or structure change the situation 

is reevaluated
● The Situation Status is reported to the application

– Normal: normal status
– Critical: entity is in a critical situation
– Dangerous: entity is in danger



20

Social Rules (I)
● Control the interaction between entities

– sub entities inherit the rules from their parent
– sub entities can overwrite and extend the rules given by 

the parent entities
– after the rule evaluation a list of actions is returned

+checkRules(Zoll pEntity : IEntity) : IAction
+checkRulesAndExecuteActions(Zoll pEntity : IEntity)

RuleEvaluator

KUIEntity «Schnittstelle»
IRule

+execute()

«Schnittstelle»
IAction

1

-m_lstRules

*



21

Social Rules (II)
● Rules inherit the interface IRule

– check(): Checks if the rule is respected. If something has 
to be done the method returns an action object

– getName(): returns the name of the rule. The name is 
needed to identify the rule

– isFinal(): Final rules can not be overwritten by rules from 
child entities.



22

Merging Social Rules
● Mergin rules using the rule-union operator Û:

– R
1
 and R

2
 are set of rules from entity e

1
 and e

2
 

(e
1
 = parent of e

2
)

– if a rule exists in both sets the rule of the child entity e
2
 is 

taken

Rxy R1 , R2={x∈R1 , y∈R2 : id  x≠id  y}

R1Û R2=Rxy R1 , R2∪RxR1 , R2∪R yR1 , R2

RxR1 , R2={x∈R1:∃ y∈R2 : id  x=id  y∧isFinal x}

R yR1 , R2={y∈R2:∃x∈R1 : id  x=id  y∧¬isFinal x}


