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Entities
● Entities are described by

– Identity: unique ID (UUID), Name, RFID Tag, etc.
– Context: Sensor values, location
– Motion and Activity

● There exist different types:
– Actor: observed entities of the physical world
– Observer: Software observer looking at a part of the 

world
– Viewer: Software filter used
– Sendget: Sensor entity
– Group: virtual entity used to group physical entities 
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Ports (I)
● Ports are described by a port descriptor:

– ID and Name
– Orientation (input, output or inout)
– Synchronisation type (asynchron or synchron)
– Delivery Protocol (FIFO, causal order, total order, ...)
– Public flag (visible for others)
– Address
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Ports (II)
● An entity can access the communication channel 

only through ports
– write: The sender puts a message into the channel. The 

port must have output access.
– read: The receiver reads a message from the channel. 

The port must have input access.
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Ports (III)
● Interface IPort 

– open: connects the port to a communication channel
– close: disconnects the port from the channel
– peek: gets a message from the channel without removing 

it
– read and readBlocked: consumes a message from the 

channel
– write: puts a message to the channel

● InputPort, OutputPort and InOutPort classes 
implement asynchronous port behavior
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Services and Public Ports (I)
● Service: The service is a special entity providing a 

functionality or information to the world
– one way communication: reading or writing only
– two way communication: exchaning information, 

querying, interaction
● Public ports are accessible from outside (external 

systems)
– Service Provider: The service provider port is used to 

provide services to entities
– Service Session: Once connected to the service provider 

each entity is treated in a private session.
– Service Client: Port on the client side
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Services and Public Ports (II)
– 1.) requesting the access to service through public port
– 2.) if client is accepted a private session is created. 
– 3.) the private session manages the access between 

client and service

Service
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Ports: Classdiagram
● Implementation

AbstractPort

+attachMonitor(Zoll pMonitor : IPortMonitor)
+detachMonitor(Zoll pMonitor : IPortMonitor)
+close()
+open(Zoll pChannel : ICommSpace)
+read() : IMessage
+readBlocked() : IMessage
+write(Zoll pMsg : IMessage)
+peek() : IMessage

«Schnittstelle»IPort

AbstractEntity

«uses»

+getEntityID() : UUID
+getEntityName(Zoll pMsg : IMessage) : String
+getParentEntity() : IEntity

«Schnittstelle»
IEntity

InputPort InOutPort OutputPort
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Coordination Component (I)
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● API for explicit coordination
– port matching algorithm
– rule evaluation
– set of coordination actions



13

Coordination Component (II)
● The Coordination Manager is used to 

– register all available entities and ports
– maintain the current connected port (port couplings)
– clean and remove wasted channels

● The entity space observer is able to detect situation 
changes of entities within a system
– evaluates the situation against rules
– takes actions like

● creating new channels between entities
● disconnecting existing channels
● providing or hiding services
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Message Passing
● The communication between entities is realized 

with message passing technique
– Transparent for local and remote communication
– sending through permanent channel

● a channel is installed permanently between two entities
– or sending through temporary channel (like e-mail)

● a message is addresses for different recipients. To each recipient 
a temporary channel is opened. As soon as the recipient takes 
the message the channel is closed.
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Message Passing Protocol (I)
● Basic construct is of transmission is a message 

object
– Header: contains Message ID, Sender ID, Receiver IDs, 

logical timestamp, properties
– Body: each concrete message implementation 

implements its own body
● TextMessage: String message
● ObjectMessage: Streamed object
● ...

● A message is sent from one sender to one or many 
recipients
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Message Passing Protocol (II)
● On top of the message protocol, application specific 

protocols can be defined

+clearBody()
+clearProperties()
+getPropertyValue(Zoll strName : string) : String
+getRecipient() : UUID
+getSender() : UUID
+getTimeStamp() : uint
+setPropertyValue(Zoll strName : string, Zoll strValue : string)
+setRecipient(Zoll pID : UUID)
+setSender(Zoll pID : UUID)

«Schnittstelle»
IMessage

AbstractMessage

ServiceMessageTextMessage ObjectMessage ...
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Rules
● Rules are used to

– Check if an activity is allowed in a place
– evaluate situations of entities
– coordinate the interaction between two or more entities

● 3 different rules
– activity rules 
– situation rules 
– social rules
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Activity rules
● If an activity is recognized 

– the activity status is checked
– the activity rules are attached to the place entity

● Activity lists
– forbidden: not allowed activities.
– accepted: approtiated activities.
– everything else is negotiable.

Set of all possible activities

Forbidden 
Activity List

Accepted
Activity List
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Situation rules
● Situation of each entity is treated in dedicated 

situation analysis
– Situation Manager are attached to software observer
– At each context, activity or structure change the situation 

is reevaluated
● The Situation Status is reported to the application

– Normal: normal status
– Critical: entity is in a critical situation
– Dangerous: entity is in danger
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Social Rules (I)
● Control the interaction between entities

– sub entities inherit the rules from their parent
– sub entities can overwrite and extend the rules given by 

the parent entities
– after the rule evaluation a list of actions is returned

+checkRules(Zoll pEntity : IEntity) : IAction
+checkRulesAndExecuteActions(Zoll pEntity : IEntity)

RuleEvaluator

KUIEntity «Schnittstelle»
IRule

+execute()

«Schnittstelle»
IAction

1

-m_lstRules

*
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Social Rules (II)
● Rules inherit the interface IRule

– check(): Checks if the rule is respected. If something has 
to be done the method returns an action object

– getName(): returns the name of the rule. The name is 
needed to identify the rule

– isFinal(): Final rules can not be overwritten by rules from 
child entities.
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Merging Social Rules
● Mergin rules using the rule-union operator Û:

– R
1
 and R

2
 are set of rules from entity e

1
 and e

2
 

(e
1
 = parent of e

2
)

– if a rule exists in both sets the rule of the child entity e
2
 is 

taken

Rxy R1 , R2={x∈R1 , y∈R2 : id  x≠id  y}

R1Û R2=Rxy R1 , R2∪RxR1 , R2∪R yR1 , R2

RxR1 , R2={x∈R1:∃ y∈R2 : id  x=id  y∧isFinal x}

R yR1 , R2={y∈R2:∃x∈R1 : id  x=id  y∧¬isFinal x}


