
1

Coordination Model for
Computer Science

(inclusive pervasive computing)

Benjamin Hadorn
PAI research group, University of Fribourg

26.02.2010

2

Overview
Generic Coordination Model

Coordination Model for
Computer Science

«extends»

Coordination Language

Coordination Library for Java

Pervasive Computing

Multi Agent System

Social Network
Applications

«uses»

«uses»

«uses»

«uses»

«uses»
Model

Languages

Implementations

Coordination Model
for Social Science

«extends»

...

«extends»

3

The Computer System

OS

Hardware

Middleware

Application

Coordination on
OS level

Coordination on
middleware level

logical

IO Devices
Sensor/ActuatorsPhysical

Coordination on
hardware level

OS

Hardware

Middleware

Application

IO Devices
Sensor/Actuators

Old model Current model

4

Coordination Levels
● Coordination on the Hardware Level

– wired coordination. e.g. medium access on ethernet
● Coordination on the Operation System level

– Manages the dependencies between processes and
hardware devices or system objects.

● Coordination on the Middleware level:
– Manages the interdependence of processes by mediating

 communication spaces and channels
– Manages the dependencies between human activities

using context and activity aware computing.

5

Physical Layer (I)
● Properties (from generic Model)

– entities exist only in one place at the time
– Overlapping not possible

● Entities
● Hardware
● Network
● The user (human)
● Elements of programming languages
● GUI design

6

Physical Entities (I)
● Hardware devices

– Internal components like processor, memory
– IO devices like screen, keyboard

7

Physical Entities (II)
● Network Topologies

Bus Network Ring Network

Star NetworkTree Network

8

Physical Entities (III)
● All elements of a programming language can be

seen as physical entities (Java. Lisb, Prolog...)
– representation by abstract syntax tree (AST)

● Entities like
– Variables, classes, functions, operators
– example:
if (x > 0)
{
 y:= -x;
}
else
{
 y:= x;
}

IF

Condition

Bool Expr

x > Bool Expr

0

Statements ELSE

Assignment

y Expr

Xneg

Statements

Assignment

y X

9

Virtual Layer
● Entities

● Semantic of a program code
– Software components
– Services, Applications

● virtual memory
– can exist in RAM, cache, on hard drive
– mapping to real memory addresses by MMU

● virtual machines
– one virtual machine can run on several hardware

platforms

10

Task Structure
● Manages the task dependency. 2 Examples:

● Scheduling algorithm of the OS
– assigns processes (activity) to the processor (entity)
– dependencies to resources are kept in the process table

entry
● Which entitiy plays which role (port, tool etc.)

● Planning Software (like MS Project)
– activities of humans (entities)
– task organisation (project management)

● who is doing what?
– resource assignment

● who needs what?

11

Physical and Social Laws
● Physical Law

● The speed of transmitting information
● Constraints given by the programming language

– instanciated objects can not change these constraints

● Social Law
● Security settings

– Permissions
– Restrictions

● Ethics

12

Physical and Social Laws for
Pervasive System (I)

● Physical
– Restrictions by sensors
– Measuring of gravitation, temperature, pressure, ...

● Social
– Used to allow or restrict interaction between humans and

the pervasive system
– Depend on

● the location of the user (environment)
● the context of the user
● situation analysis

– The law controls the objective coordination (generic
model)

13

Observer (I)
● The observation of a computing system is done by

– humans (users, system engineers)
● common view are given by the senses of the humans
● monitoring tools help to capture data (extending the view)

– sensors
● Energy monitoring (e.g temperature)
● Observing environment and human activities (pervasive

computing)
● Observing the states of a machine (industrial computing)

– observer-subject pattern
● a software component acts as an observer, listening to changes

of an other software component (subject)

14

Observer (II)
● Traditional entity classification (done by humans)

– Actor is
● the user (user centered view)
● computer (computer centered view)

– Tools:
● IO devices
● Processor helping doing some work (could be seen as an actor

cooperating with the user)
– Artifacts: Files and data generated by the processor
– Port: Interface to network (internet)

15

Pervasive Observer (I)
● Paradigm change in pervasive computing

● Duality within a computing system
– real world
– internal representation (software)
– Observation is relative

● System observes the human activity
– Actor: human, car, train
– Tools: PDA, Phone,...
– Ports: Phone, WiFi,...

Physical Entities

Agent (Observer)

Internal Representation

16

Pervasive Observer (II)
● The real world is observed by the computing

system
– Sensors are observers having a view onto a part of the

world
– Humans and their activities are tracked by sensors
– Context information is gathered by sensors

● The observed entities are represented by an
software entity (stub)
– helps to communicate with the entity
– storage of context data

17

Pervasive System (I)
● Internal representation of the real world

– entity space
– context
– relations

● Internal observers
– help to react on context changes
– evaluate situations
– report alerts to a higher level (application)

18

Relative information storage
● Entity contains for each possible role a context

– The observer will ask the entity what it is (actor, observer
etc.) and receive the context

● Relations contain all dependency information
– Social, spacial and task dependencies

...Entity
Context of Tool

Context of Observer

Context of Actor

ID
Location

Entity context

Made of

Relations

Made of

Structure

Made of

19

Pervasive Coordination
● Events of coordination

Coordination
Actions

Physical/Social law

Evaluation

Situation alerts

In
pu

t
Ac

tio
ns

Situation of A
Context of A

Activity of A

Situation of B
Context of B

Activity of B

Activity alerts
Activity alerts Situation alerts Coordination

Actions

20

Communication
● Definition (from generic model)

Communication is a process of transferring information
form one entity to one or more entities.

● Human Computer Interaction (HCI)
● Network communication (like Bus, Ethernet, WiFi)
● Programming languages

– variable assignment, function calling, events
● Interprocess communication

– shared memory
– message passing
– others: tuple spaces, shared files (e.g pipe)

21

Ethernet Communication Pattern
● Ethernet

● Peer to peer: TCP/IP
● Broadcast and multicast

– Ethernet using UDP
– muticast address 224.x.x.x

● Generic communication
– Linda tuple space, JavaSpace

22

Programming Language (I)
● x = y;

● syntactical: y communicates with x
● semantical: y send its value to x. The value of x equals the value

of y afterwards.
● x *= y;

● syntactical: same as x = y;
● semantical: x is multiplied with the value of y

● x = x * y;
● syntactical: x and y produce a result r which is communicates

with x
● semantical: same as x *= y;

23

Programming Language (II)
● Calling functions

– A function can be seen as an entity.
● If a function f() is called within an other function g():

g() { f(); } then g() communicates with f()
– f(x↓)

● syntactical: call of f() by passing x.
● semantical: f(x) receives the content of x.

– f(x↓,y↑)
● syntactical: call of f() by passing x and receiving y.
● semantical: f(x,y) receives the content of x and returns a content

for y.
– f(x↓↑)

● syntactical: call of f() by passing x and receiving x
● semantical: x is passed to function and contains the changes

afterwards (defails depend on the implementation).

24

Interprocess Communication
● Communication between processes

● Shared memory

● Message passing
● Shared file

– Unix provides the pipe |
– The pipe implements the producer-consumer

coordination process
● p | q : process p produces data, q receives the data
● Unix mediates a channel (a file) using the FIFO protocol

p q
write

read

Shared
memory

Circular Buffer
(Unix file)

25

Events and JavaSpace
● Events.

myButton.addActionListener(
 (ActionListener)EventHandler.create(ActionListener.class,
 frame, "toFront"));

– An event or signal is sent and captured by an action
listener (Java).

– The signal handling works similar (Unix, C)
● JavaSpace

– entities communicate indirectly over a blackboard space
– distributed space storing message objects
– receiving messages using a matching template

