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Coordination Levels
● Coordination on the Hardware Level

– wired coordination. e.g. medium access on ethernet 
● Coordination on the Operation System level

– Manages the dependencies between processes and 
hardware devices or system objects.

● Coordination on the Middleware level:
– Manages the interdependence of processes by mediating 

 communication spaces and channels
– Manages the dependencies between human activities 

using context and activity aware computing.
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Physical Layer (I)
● Properties (from generic Model)

– entities exist only in one place at the time
– Overlapping not possible

● Entities
● Hardware
● Network
● The user (human)
● Elements of programming languages
● GUI design
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Physical Entities (I)
● Hardware devices

– Internal components like processor, memory
– IO devices like screen, keyboard
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Physical Entities (II)
● Network Topologies

Bus Network Ring Network

Star NetworkTree Network
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Physical Entities (III)
● All elements of a programming language can be 

seen as physical entities (Java. Lisb, Prolog...)
– representation by abstract syntax tree (AST)

● Entities like
– Variables, classes, functions, operators
– example:
if (x > 0) 
{
  y:= -x; 
} 
else 
{ 
  y:= x; 
}

IF

Condition

Bool Expr

x > Bool Expr

0

Statements ELSE

Assignment

y Expr

Xneg

Statements

Assignment

y X
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Virtual Layer
● Entities

● Semantic of a program code
– Software components
– Services, Applications

● virtual memory
– can exist in RAM, cache, on hard drive
– mapping to real memory addresses by MMU

● virtual machines
– one virtual machine can run on several hardware 

platforms
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Task Structure
● Manages the task dependency. 2 Examples:

● Scheduling algorithm of the OS
– assigns processes (activity) to the processor (entity)
– dependencies to resources are kept in the process table 

entry
● Which entitiy plays which role (port, tool etc.)

● Planning Software (like MS Project)
– activities of humans (entities)
– task organisation (project management)

● who is doing what?
– resource assignment 

● who needs what?
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Physical and Social Laws
● Physical Law

● The speed of transmitting information
● Constraints given by the programming language

– instanciated objects can not change these constraints

● Social Law
● Security settings

– Permissions
– Restrictions

● Ethics
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Physical and Social Laws for 
Pervasive System (I)

● Physical
– Restrictions by sensors
– Measuring of gravitation, temperature, pressure, ...

● Social
– Used to allow or restrict interaction between humans and 

the pervasive system
– Depend on 

● the location of the user (environment)
● the context of the user
● situation analysis

– The law controls the objective coordination (generic 
model)
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Observer (I)
● The observation of a computing system is done by

– humans (users, system engineers)
● common view are given by the senses of the humans
● monitoring tools help to capture data (extending the view)

– sensors
● Energy monitoring (e.g temperature)
● Observing environment and human activities (pervasive 

computing)
● Observing the states of a machine (industrial computing)

– observer-subject pattern
● a software component acts as an observer, listening to changes 

of an other software component (subject)
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Observer (II)
● Traditional entity classification (done by humans)

– Actor is 
● the user (user centered view)
● computer (computer centered view)

– Tools:
● IO devices
● Processor helping doing some work (could be seen as an actor 

cooperating with the user)
– Artifacts: Files and data generated by the processor
– Port: Interface to network (internet)
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Pervasive Observer (I)
● Paradigm change in pervasive computing

● Duality within a computing system
– real world
– internal representation (software)
– Observation is relative

● System observes the human activity
– Actor: human, car, train
– Tools: PDA, Phone,...
– Ports: Phone, WiFi,...

Physical Entities

Agent (Observer)

Internal Representation
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Pervasive Observer (II)
● The real world is observed by the computing 

system
– Sensors are observers having a view onto a part of the 

world
– Humans and their activities are tracked by sensors
– Context information is gathered by sensors

● The observed entities are represented by an 
software entity (stub)
– helps to communicate with the entity
– storage of context data
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Pervasive System (I)
● Internal representation of the real world 

– entity space
– context
– relations

● Internal observers 
– help to react on context changes
– evaluate situations
– report alerts to a higher level (application)
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Relative information storage
● Entity contains for each possible role a context

– The observer will ask the entity what it is (actor, observer 
etc.) and receive the context

● Relations contain all dependency information
– Social, spacial and task dependencies

...Entity
Context of Tool

Context of Observer

Context of Actor

ID
Location

Entity context

Made of

Relations

Made of

Structure

Made of
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Pervasive Coordination
● Events of coordination

Coordination 
Actions

Physical/Social law

Evaluation

Situation alerts

In
pu

t
Ac
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ns

Situation of A
Context of A

Activity of A

Situation of B
Context of B

Activity of B

Activity alerts
Activity alerts Situation alerts Coordination 

Actions
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Communication
● Definition (from generic model)

Communication is a process of transferring information 
form one entity to one or more entities.

● Human Computer Interaction (HCI)
● Network communication (like Bus, Ethernet, WiFi)
● Programming languages

– variable assignment, function calling, events
● Interprocess communication

– shared memory
– message passing
– others: tuple spaces, shared files (e.g pipe)
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Ethernet Communication Pattern
● Ethernet

● Peer to peer: TCP/IP
● Broadcast and multicast

– Ethernet using UDP
– muticast address 224.x.x.x

● Generic communication
– Linda tuple space, JavaSpace
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Programming Language (I)
● x = y; 

● syntactical: y communicates with x
● semantical: y send its value to x. The value of x equals the value 

of y afterwards.
● x *= y;

● syntactical: same as x = y;
● semantical: x is multiplied with the value of y

● x = x * y; 
● syntactical: x and y produce a result r which is communicates 

with x
● semantical: same as x *= y;
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Programming Language (II)
● Calling functions

– A function can be seen as an entity. 
● If a function f() is called within an other function g():  

g() { f(); }  then g() communicates with f()
– f(x↓)

● syntactical: call of f() by passing x. 
● semantical: f(x) receives the content of x.

– f(x↓,y↑)
● syntactical: call of f() by passing x and receiving y. 
● semantical: f(x,y) receives the content of x and returns a content 

for y.
– f(x↓↑)

● syntactical: call of f() by passing x and receiving x
● semantical: x is passed to function and contains the changes 

afterwards (defails depend on the implementation).
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Interprocess Communication
● Communication between processes

● Shared memory

● Message passing
● Shared file

– Unix provides the pipe |
– The pipe implements the producer-consumer 

coordination process
● p | q : process p produces data, q receives the data
● Unix mediates a channel (a file) using the FIFO protocol 

p q
write

read

Shared 
memory

Circular Buffer
(Unix file)
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Events and JavaSpace
● Events. 

myButton.addActionListener(
    (ActionListener)EventHandler.create(ActionListener.class,   
                                                                frame, "toFront"));

– An event or signal is sent and captured by an action 
listener (Java). 

– The signal handling works similar (Unix, C)
● JavaSpace

– entities communicate indirectly over a blackboard space  
– distributed space storing message objects
– receiving messages using a matching template


