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Abstract

Pervasive computing deals with computation embedded into regularly used objects.
The focus of this �eld is to support the user with all those devices by eliminating the
need for explicit interaction when doing his task. The system should interact with the
human in a rather implicit and non-intrusive way. Since the number of devices and
their current context used in human activity is variable the system must be based on a
�exible and reliable coordination framework. Good coordination minimizes the explicit
and intrusive interaction between humans and computational devices.

The goal of this master thesis is to create a generic coordination model, which can be used
in various scienti�c �elds like computer science, economics and social science. Generally
it de�nes how the world is composed and what dependencies occur between entities. The
de�nition of activities and communication are essential parts of the model and help to
describe the dynamic aspects. The second part of the master thesis concerns a more
speci�c coordination model for pervasive computing, which is derived from the generic
coordination model. A coordination language is developed to integrate the model into
a pervasive middleware. At the end a prototype is developed to validate the model and
the language. It is based on the pervasive platform uMove of the PAI research group and
shows how entities are tracked in a smart environment.

Keywords: Coordination model, coordination language, context awareness, activity
awareness, pervasive services, pervasive coordination
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1
Introduction

Pervasive computing is a relatively new discipline in computer science which aims
to bring computational power closer to the physical world. In contrast with desktop
interaction, which is based on explicit interaction, pervasive computing tries to support
human activity in an implicit way. To achieve this goal a pervasive environment can
be considered as a physical environment enriched with computing and communication
devices. Therefore the system is mostly hidden to human but still present everywhere.
Even though mobile networks are regularly used for computing nowadays and mobile
applications have been developed to meet many human needs, we still face the lack of
calm computing proposed by M. Weiser [Wei91]. Paul Dourish [BD07] identi�ed some of
the reasons, like messy infrastructure and incompatible protocols, which are responsible
for di�erent developments of pervasive computing in the last few years. Other reasons
might be missing frameworks and the huge gap between the operation systems and the
pervasive applications. There exist only a few prototypes which allow to create pervasive
applications, and most of them are designed for a speci�c application �eld.

Our research group is working on a middleware for pervasive computing which �lls this gap
between operation system and pervasive applications. The middleware provides a uniform
and general infrastructure. It helps to handle the heterogeneity of the physical world and
provides a standardized homogenous interface to applications. Several publications are
already available on di�erent aspects of this middleware such as uMove in [BH09] and
Human Computer Interaction (HCI) in [BLLH10].

1.1. Motivation

One of the missing pieces of the pervasive middleware is an uniform coordination lan-
guage, which is dedicated for pervasive computing. The motivation of this thesis was
to �nd and develop a model which �ts into our group's middleware. Based on the pre-
vious work of Gelernter and Carriero [GC92], Malone and Crowston [MC94] and of our
research group [Sch01] we show how coordination for pervasive systems can be realized.
We chose a holistic approach to express that the world is made up of interacting entities
building a whole. This includes the aspects of the physical and the virtual structure, the
activities and the relative point of view. The activity describes any state changes over a
certain time, where as the relative point of view expresses the relativity and subjectivity
of observers.

2
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1.2. Goals

The goal of this thesis is to show how coordination can be integrated into a middleware
for pervasive computing. The latest research results on the holistic approach of our
middleware must be considered. This especially includes the relativity of the point of
view. Instead of directly creating a coordination model for pervasive computing we intend
to de�ne a generic model �rst. This model should be valid for all scienti�c �elds such
as social, economic and computer studies. We think that the integration of pervasive
applications into the daily life of humans can be done more smoothly if our framework
respects the generic model because it will re�ect the natural behavior and follow the
general rules of the real world. Finally a coordination library for Java will be de�ned. The
goal is to have a tiny but extensible application interface used to de�ne the coordination
part of an application.

1.3. Outline

This document is structured as follows: Chapter 2 outlines the state of the art. It
gives an overview of how coordination is de�ned in theory and how it in�uences the
performance of a system. A physical meta model is introduced using a holistic approach.
Other selected topics like context awareness, activity theory and dependency are brie�y
explained.

In chapter 3 we propose generic coordination model which can be applied to several sci-
enti�c �elds (�gure 1.1). The model helps to explain and de�ne the di�erent parts of a
system at a very high level of abstraction. The model includes physical and virtual struc-
tures, the de�nition of tasks (activities) and the relativity of observation. We show how
the physical and virtual entities are de�ned and related to each other. Special attention
is given to the de�nition of tasks and activities. The chapter also explains the relativity
of observers, their perception and point of view and includes relative entity classi�cation
based on a simple taxonomy. At the end communication is treated. Communication plays
a major role in coordination and can be seen as a main activity to exchange information
between entities. We show how communication can be classi�ed using simple criteria.

In chapter 4 we show how the generic coordination model is adapted for computing sys-
tems and specially for pervasive systems. Only a few selected topics of computer science
are treated in this chapter like hardware composition, networking and programming lan-
guages. An immense amount of aspects were left out since from our point of view they
were not important for pervasive computing. Therefore we call this model the coordi-
nation model for pervasive computing. In contrast to the traditional models, where the
computer was seen as an independent and delimited tool, we put the computer system
into a di�erent position. In our model the pervasive system is an observer of the real
world rather than being just a tool used for computation. Humans are also treated dif-
ferently in our model. The user as well as the system engineer in�uence a system. We
state that a human is a central entity to be considered and has to be integrated into the
system.
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Figure 1.1.: Overview of the coordination model and its implementations

Based on a pervasive coordination model a coordination language is de�ned in chapter
5. The language is split into two main parts: 1) the representation of the world using
entities, their contextual information and relations and 2) the coordination component
managing the communication between the entities using rules. The �rst part is just brie�y
explained since it is part of the uMove framework and described in [BH09]. The second
part contains pure coordination issues and is explained together with the communication
channels and rule architecture.

Using a concrete case in chapter 6 we show how coordination of pervasive computing
works. The case study shows how a mobile device can be tracked by a smart environment.
As a smart environment we use a server application providing pervasive services and a
WiFi network to provide the services in a physical environment. Depending on the
human's context and activity di�erent services are provided to them.

Some conclusions and possible future work complete this paper.
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State of the Art

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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2.1. Introduction

This chapter outlines related work and theories which our coordination model is based
on. Coordination concerns who is doing what and who is getting which information. There
are many de�nitions and descriptions of �coordination�. One of the most commonly used
de�nitions is given by Malone and Crowston, in [MC94]:

De�nition 2.1 Coordination is managing dependencies between activities.

In a static world having no necessity for change no coordination will take place. But as
soon as someone has needs it will require an activity to satisfy them. For instance two
atoms react with each other in order to be in a more stable state. The need is a stable
state and the activity is a chemical reaction. All atoms are in concurrency with each
other and some implicit coordination process takes care of it, for instance "�rst come -
�rst served".

A more technical view about coordination was given by Gelernter and Carriero in [GC92].
Mainly, any system can be split into two parts, the computation and the coordination.
Coordination can be seen as the glue �tting computation parts together. It is a very
important aspect of the system but mostly unseen and unrecognized by users, as long
as it does what it is supposed to do. We mostly notice coordination if it does not work
properly. For instance if we get the letters of our neighbor or if we wait at the train
station for a delayed train. Gelernter and Carriero also state that a coordination language

6
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is orthogonal to a computing language, meaning it extends the computational language
by managing interdependencies between di�erent computational parts. They proposed a
language called LINDA which is probably the most prominent coordination language. It
is based on a tuple space abstraction coordination model (blackboard communication).

Michael Schumacher and Oliver Krone proposed a di�erent coordination model for multi
agent systems (MAS) [Sch01], [KCDH98]. This model already de�ned agents, ports and
communication patterns. STL and STL++ were introduced as coordination languages
based on C and C++ respectively. Sergio Ma�oletti in [MKMH04] de�ned a coordina-
tion model to describe and manage the dynamics of an environment called UBIDEV. This
framework allows to model an environment in terms of resources and services manipu-
lating those resources. The framework is structured into several layers. The lower layers
have to deal with the heterogeneity of physical entities, where as the top layers provide
a homogenous API to applications.

The coordination model proposed in this thesis is based on a generic coordination model,
XCM [TCH05]. In XCM everything is an entity. The entities are composed of enti-
ties. The root entity is called the universe, and an undecomposable entity is called an
atom. Ports are dedicated to the communication between entities. The ports are the
fundamental mechanism in XCM to coordinate entities.

The rest of this chapter addresses important theories and models which are connected to
our holistic coordination model, such as the physical model, activities and dependencies.

2.2. Physical Model

Our coordination model is based on the physical world. Therefore it is necessary to lean
on a physical model. The most used physical model nowadays is based on the mechanist
paradigm which states that the physical world is made of material objects moving in
space and time. Their movements are based on physical laws. As explained by Eric
Schwarz in [Sch02] this model is insu�cient to describe partially autonomous biological
and social entities. Systems like social, political, ecological and other living systems are
hard to situate in the mechanist framework. He proposes a new framework which is more
general than the Cartesian-Newtonian mechanist approach. This framework should help
to understand real life and complex systems with self-organizing and non-linear behavior.
It is neither dualistic nor deterministic, but includes the holistic nature of living systems.

The framework of Eric Schwarz [Sch02] does not only take the material structures (matter
and engery) into account, but also considers an immanent network of virtual relations.
This relation network a�ects the future states of the system. The concepts of whole, of
existence or of being are part of the framework and denote that no single parts of the
whole can be analyzed in order to understand the whole.

The simplest con�guration of things is a system made of two components in relation. It
either represents two interacting entities or a subject observed by an observer (�gure 2.1
left side). The model is made up of three main layers. The �rst layer is called the energy
plane. It corresponds to the world of physics and describes the physical world of things.
The second layer contains the cybernetical world of the potential relations immanent in
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Figure 2.1.: Physical model proposed by Eric Schwarz.

the system [Sch02]. The last layer is the plane of being which contains the system as an
existing whole.

2.3. Activity and Motivation

Activity can be understood as a list of actions changing a particular part of the world
in order to achieve a goal. If we take a picture of the world we would not be able to detect
any activities. We have to take a second or third picture later to detect what changed
since the �rst snapshot. This example shows that activities occur in an environment over
time and de�ne the evolution of the system.

But having no idea about the motivations of the entities changing the world, it is hard
to analyze their activities and almost impossible to coordinate them. Activity and moti-
vation go along with each other. Kuutti showed how activities and goals are connected
[Kuu95] (�gure 2.2). He used the word motive rather than goal to express why an activity
happens, and we will use the same name in future explanations of our model. He showed
that activities become decomposed into actions, and actions into operations. The dif-
ference between actions and operations is merely that actions are performed consciously
where as operations are done unconsciously. We will use the word action for both types
in order to simplify the problem.

According to activity theory [Kuu95],[Nar95] an activity always contains various artifacts
such as instruments, signs, methods and laws. Each artifact plays a mediating role
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Figure 2.2.: Kuutti de�nes activities as a chain of actions.

Figure 2.3.: Structure of an activity

within the activity. Figure 2.3 shows the structure of an activity and the mediating roles
of artifacts.

The relationship between object and subject is mediated by tools. The tools are used by
the subject to transform the object into an outcome. A third main component, called
community, is added to the activity framework. The community shares the same object
with the subject. The new relation between subject and community is mediated by rules.
They also include norms, conventions and social relations. The other relationship called
division of labor refers to the organization of the community which is used to transform
the object into the outcome.

2.4. Dependencies

As recommended by Kevin Crowston in [3] the elements of Malone and Crowston's
framework [MC94], namely motives, activities, actors and resources can be grouped into
2 categories:

� Entities de�ning the world. These include the actors, the environment (location)
and the resources used in the activities.

� Tasks which include motives (desired states of the word) and the activities (list of
action to be performed to achieve a particular state)
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Between entities and tasks there exist various dependencies which are managed by co-
ordination. A dependency is always dynamic and can change over time. Therefore all
dependencies are regarded as temporal dependencies. The dependencies can be split into
di�erent types:

� Task dependency : describes the dependency between resources and activities
using them. For instance two mechanics work together on a car. The common
motivation is to �x the problem whereas the activities of the two mechanics might
be di�erent from each other. All entities participating in an activity (mechanics,
tools and car) depend on each other.

� Social dependency : this dependency describes how entities are related to each
other. For instance the neighborhood describes a common social dependency.

� Spatial dependency : the spatial dependency represents the dependency within
the physical world. The behavior of a hiker depends on whether he walks inside a
valley or climbs up a steep hill.

2.4.1. Coordination Process Handling Task Dependencies

The main problem of task dependency is to solve the problem of resource assignment.

De�nition 2.2 A resource is any physical or virtual entity of limited availability, which
can be used to accomplish an activity.

As proposed by Malone and Crowston in [MC94] di�erent kinds of task dependencies can
be characterized. For each dependency one or many associated coordination processes
can be identi�ed for handling the dependencies. The following list gives just a short
overview of the most common task dependencies (�gure 2.4):

� Flow : occurs if an activity produces a resource which is needed by another activ-
ity (producer-consumer problem). Possible coordination processes are noti�cation,
sequencing and tracking.

� Sharing : occurs if two or more activities need the same resource. First come -
�rst served, priority order or bidding are coordination processes to manage this
dependency.

� Fit : two or more activities produce the same resource. Goal selection and task
decomposition are possible coordination processes to manage the �t dependency.

After identifying the type of resource needed to perform the activity, the resource has to
be found and assigned to the task. Kevin Crowston [3] identi�ed the following steps in
order to assign resources to tasks:

1. Identifying the required resource

2. Identifying what resources are available

3. Choosing the particular set of resources

4. Assigning the resource to the task
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Figure 2.4.: a) �ow- b) share- and c) �t-coordination process

2.4.2. Social Dependency

Social dependency describes how entities are related to each other. According to Gid-
dens structural theory [Gid84] the dependence of humans on a social structure a�ects
their activity. The social structure is de�ned as a composition of rules and resources (hu-
mans, artifacts). He argues that it is created as a medium for practical activity. But the
activity also changes and evolves the social structure. Social structure and the activity
depend on each other but also constrain each other.

In our generic coordination model we split Gidden's social structure into the following
components:

� Social Law : rules which govern the interaction and activities of the entities par-
ticipating in the social structure

� Social Dependency : relation of the entities forming the social structure

2.4.3. Spatial Dependency

Spatial dependency describes where an entity exists within the physical world. Each
entity is placed within an environment. The environment will more or less in�uence the
context of the entity.
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3.1. Introduction

The generic coordination model allows for the de�nition of a model for coordination
at a very abstract level and therefore can be used in various scienti�c �elds, like com-
puter science, social and economic studies. It is based on previous work by Amine Tafat
[TCH05]. A few aspects have changed since the last publication of the former model. The
main di�erence between the model described in [TCH05] and the one we propose in this
thesis is the new structure of activities and tasks. This model also contains the concepts
of observers and their relative perception.

3.2. Modeling Coordination

Before discussing coordination we have to clarify how a system is de�ned. There exist
di�erent types of systems such as inert or dead, living or evolutionary, closed or open.
The coordination model holds for living and evolutionary systems but not for static dead
systems. For static dead systems no coordination is needed, since coordination manages
dependencies between activities and static dead systems do not have them.

The model holds for open and closed systems. Within an open system external in�uences
and dependencies must be considered when coordinating the entities of the system, where
as in closed systems no external dependencies exist. To model coordination for an open
system we propose to enlarge the open system to include all in�uencing components in
order to achieve a closed system at the end. This will help to avoid the situations where
in�uences from outside are not recognized within the coordination. A more precise de�ni-
tion about what a system is, what it is made of and how it is treated within coordination
is given in chapter 3.9. The explaination of the observers and their relative perception
are also presented in chapter 3.9.

As proposed by Michael Schumacher in [Sch01] we distinguish between two main types
of dependencies: subjective and objective dependencies. Since coordination is managing
those dependencies, we split coordination into two groups.

� Objective Coordination : manages the objective dependencies. The main consid-
eration is the organization of the world and the communication between the entities
of the world.

� Subjective Coordination : manages the subjective dependencies, which result
from the individual point of view of each entity (observer of a system). Subjective
coordination can be split into two sub groups:

� Explicit Subjective Coordination: concentrates on coordination techniques which
explicitly manage dependencies such as negotiation, planning or organization
techniques.

� Implicit Subjective Coordination: concentrates on coordination patterns which
implicitly coordinate the dependencies between entities. Each entity is not
aware of the coordination but ful�lls the tasks following simple rules (tech-
niques such as stigmergic coordination belong to implicit subjective coordina-
tion).
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Figure 3.1.: Shows how subjective and objective coordination are linked together.

There exist some dynamics between objective and subjective coordination as A. Omicini
described in [ORRV03] (�gure 3.1).

� Re�ecting on coordination : intelligent agents analyze and measure how well
coordination is performed. On the level of subjective coordination the agents try
to understand the problems and search for possible solutions.

� Reifying coordination1: once a solution is available the agents modify the objec-
tive coordination by changing the rules and the structure.

3.2.1. Objective Coordination

The �rst part of the model describes mainly the objective dependencies.

� Spatial dependency : where is the entity located?

� Social dependency : who or what does the entity belong to?

� Task dependency : where is the entity used or what is the entity doing?

These dependencies lead to the objective part of the generic coordination model, which is
organized in the physical, virtual and task structure (�gure 3.2). The physical structure
of entities helps to manage their spatial dependency. It gives a structure to the world
of entities and puts them into physical relation. The virtual structure is mainly needed
to manage the social dependency. Complex social networks can be modeled using this
structure. But it also helps to manage the spatial dependency using virtual places. Finally
the task dependency is managed by the task structure which brings the activities and the
resources into relation. Each relationship is temporal, because the relation might change
during the lifetime of an entity.

1Rei�cation: making a data model for a previously abstract concept
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Figure 3.2.: The di�erent components of the coordination model

3.2.2. Subjective Coordination

Subjective coordination is a process by which the entity behaves according to some
internal logic in order to ensure that the community acts in a consistent manner. This
can be performed explicitly, meaning the entity is aware of the coordination process or
implicitly, just following some simple rules. For instance some internal algorithm might
lead to swarm intelligence known from the study of bees and ants.

The subjective part of the coordination model helps to manage subjective coordination
which includes the following aspects

� Negotiating, planning and organizing tasks

� Implicitly marking good solutions which are followed by others (stigmergy)

� Modi�ying the social rules in order to optimize the interaction between entities

3.3. De�nition of an Entity

The key element of the coordination model is the notation of an entity. An entity
describes any object which belongs in the system.

De�nition 3.1 An entity is anything physical or virtual that has a distinguished, separate
existence.

The distinction between physical and virtual entities is:

� Physical entity : is an object that exists throughout a particular trajectory in
space over a particular duration of time, such as a planet, human etc.

� Virtual entity : an object that exists in the domain of the immaterial world and
does not need any place or time to exist, for instance a community, a social network.
This includes all abstract and logical objects.

A decomposable entity is called a composition which means it has a structure. An entity
can be composed of other entities. For instance a building is composed of �oors and
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physical entity virtual entity task

physical entity physical / logical relation logical relation logical relation
virtual entity logical relation virtual/logical relation logical relation

task logical relation logical relation logical relation

Table 3.1.: Entity relation types

rooms. The largest composition is called the universe. No entities can exist outside of
the universe. The universe is the border of a closed system. It is possible to create new
entities or to destroy entities within an universe. Entities are also capable of moving from
one composition to another, modifying their spatial dependency. The smallest entity is
called an atom. Atomic entities can not be decomposed.

3.4. De�nition of a Relation

Two or more entities might share some common properties. We call the sharing a
relation. For instance if two humans share the same last name, they are related by that
name.

A dependency is a special type of relation between entities. Dependency means that the
relation in�uences all entities which are part of the relation. In the example of two people
sharing the same last name no dependency exists. They might not know each other. But
if they belong to the same family, things are di�erent. They might meet and exchange
information, share their history. Dependency is much stronger than a relation.

A relation can exist between entities and tasks. They are in physical, virtual or logical-
relations as shown in table 3.1. Physical relations exist only between physical entities and
are managed by the physical structure only. Logical relations can exist between physical
entities, virtual entities or even between tasks.

As a case, the virtual relation can occur only between virtual entities. If the virtual
structure (�gure 3.2) represents parts of the physical world, the virtual entities of this
structure are also virtually related to each other. Logical relations are used to express
mathematical dependencies between entities, whereas virtual relations also represent any
other kinds of relations.

3.5. Physical Entity Structure and Relations

The physical structure deals with physical entities and their physical relations. As
de�ned in [BH09] there are di�erent types of spacial relations, such as inside, next-to or
joined.

� Inside : the inside-relation is the main physical relation. An entity can be only
inside one parent at the time.

� Next-To: two entities are close to each other or within a de�ned range
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Figure 3.3.: Representation of a physical entity structure.

� Joined : two entities are joined if they are in the same place and move in the same
direction

The physical structure helps to localize entities and to compute their environmental
context. For instance, if the temperature changes within a room the context will change
for all humans remaining there. The environment of the entity concerns the external
context, like room temperature and humidity. It also includes the surroundings (other
entities).

De�nition 3.2 The environment is the external context and surrounding of an entity.

3.5.1. Inside Relation

Physical entities can be grouped into larger compositions. A physical entity can exist
only in one physical composition at the same time (as we follow the paradigm of classical
physics). This has a serious impact on how physical structure is modeled. For instance
overlapping of physical entities is not possible (�gure 3.3).

An entity which can be decomposed is called a physical location and we use the notation
of a rectangle to express it. We use the notation of a circle to express an atomic entity
(�gure 3.4a).

The inside-relation can be represented using a tree, called an entity tree. The entity tree
represents the exact same structure and is equivalent to the previous described block
notation. Compositions are represented by any nodes containing child nodes, whereas
atoms are leaf nodes of the tree (�gure 3.4b).

3.5.2. Next-To Relation

The next-to relation is de�ned by a radius around the entity. If another entity stays in
the same location and is within this range it has a next-to relationship (in [2]) with the
�rst entity.
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Figure 3.4.: Entities are structured within the universe E0. The physical structure can
be represented as a block notation (left) or as an entity tree (right).

Figure 3.5.: a) A virtual structure can overlap with other virtual structures. b) virtual
structure can also be modeled as a relation graph between virtual structures
and entities.

3.5.3. Joined Relation

The joined relation is stronger than the next-to relation. The two entities in a joined-
relation ful�ll the next-to relation, but they also move together in the same direction and
with the same speed. The joined relation is dynamic. For instance, if two persons travel
in the same car, they have a joined relation to each other. But as soon as one person
leaves the car, the relation is broken.

3.6. Virtual Entity Structure

The virtual entity structure contains virtual and physical entities. It represents all non
physical entity relations, for instance the hierarchy of a company or a neighborhood of
residents. We use the notation of rounded rectangles to express virtual structures and
entities (�gure 3.5).

There exist many di�erent types of virtual structures. For instance we have:

� Community : it is a set of entities. The structure of a community is �at.

� Organization : an organization is a complex structure like a company hierarchy or
a political system represented for instance by a tree.
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� Network : the structure of a network is very generic. Typical instances of network
structures are social networks, neuronal networks and computer networks. It is a
graph.

� Virtual Location : a virtual location is a special virtual structure. A physical
location can be split into several virtual locations overlapping each other. For
instance a room can be split into 3 virtual locations: the back, the center and the
front. There are no sharp borders between them. Statements like "more in the
back" or "almost in the center" show that virtual locations have fuzzy borders.

The virtual structure helps to de�ne social dependencies between entities. Who is as-
sociated with whom can clearly help to coordinate the communication of entities. For
instance, a neighborhood automatically receives a message if a cat has disappeared from
it.

3.7. Task Structure

It is not enough to stay with the physical structure (who is where) and with the virtual
structure (who is associated to whom) in order to model optimal coordination. Since
tasks have their own structure and describe how the system structure evolves over time,
we added the notation of tasks to the generic model as a separate structure. In general, a
task can be understood as a transformation of the system over time. Each task describes
how this transformation is done, what the motivation is and what resources are needed.

The task structure is needed in the generic coordination model to manage the task de-
pendencies of entities.

3.7.1. Decomposing Tasks

A task can be decomposed into sub-tasks. Sub-tasks can run at the same time (in
parallel). The main task ends if all sub-tasks have ended. For instance the main task is
"building a car". It can be decomposed into "building the motor", "building the seats",
"assembling" seats and motor into the car etc. (�gure 3.6).

Some of those tasks can be done in parallel such as "building seats" and "building motor".
Some can start after others are done, such as putting seats and motor into the prepared
car. The management of tasks is naturally de�ned by the used resources and the fact that
some tasks need resources produced by other tasks. Nevertheless the task management
can be very complex and lead to deadlocks, starvation and other problems.

3.7.2. Motivation

Every task has its motivation. There exists no task without a motivation. Motivation
is not always obvious. Sometimes it is hidden and only known to the entities performing
the task. If a task is decomposed into several sub tasks, each sub task has a motivation
which follows the main motivation.
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Figure 3.6.: The example shows how a task can be decomposed into several sub-tasks.

3.7.3. Activity

An atomic task is called an activity. An activity can contain several actions which
are executed sequentially (�gure 3.7). For instance the activity "writing a text" contains
"take pen" and "write title" as actions.

Each action has its own goal. It is some kind of post-condition of an action. The goal
does not change during the action whereas the motive of a task can change and evolve
over time. If a motive changes, it might happen that the goals of executed actions
don't �t the motive anymore. Then the actions are useless or interfering in the current
activity. For instance if a team manager changes his opinion about an ongoing process,
it is expected that some work done by the team will become obsolete. An activity has
always an outcome. The following list shows some of the possible outcomes:

� Creation of new entities

� Removal of old entities

� Internal state changes of entities

� Starting of new tasks

� Subjective coordination (This includes internal optimizing of coordination pro-
cesses)

3.7.4. Role

Activity uses di�erent entities during its execution. This generates several relations
between entities. A relation is called a role and the entity involved in the activity is
called a resource. Each resource participating in an activity plays a speci�c role. The
following list is not exhaustive but gives an overview of the most important roles that an
entity might play:

� Actor : role of the entity who performs the activity (�gure 3.7)

� Place : the activity is always done within a place. In this case the entity is used as
an environment.
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Figure 3.7.: Shows the composition of an activity and several relations to entities taking
part in this activity.

Figure 3.8.: Model of situation

� Tool : an actor uses a tool to perform the activity

� Observer : the observer is looking at the entities carrying out an activity. He
evaluates the current situation of the setup and reacts upon it, for instance using
subjective coordination.

� Port : a port is an entity used to receive and send information to other entities

� Not-Classi�ed : all entities which are not classi�ed or don't participate in the
activity

3.7.5. Situation

Finally there is the de�nition of a situation. Situations are related to the notion of
context but are situated on a higher semantic level as proposed by S. W. Loke in [Lok04].
A situation also includes activities. As proposed by Y. Li and J. Landay in [LL08] an
activity evolves every time it is carried out in a particular situation. Here the situation
is understood as a set of activities or tasks performed under certain circumstances. Our
model integrates those two visions [BH09] (�gure 3.8).

In general, situations are used to evaluate an activity within the context of entities.
Situation analysis helps to check if the rules are followed by entities.
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Figure 3.9.: A law de�ned in the universe a�ects the physical, virtual and task structure.

De�nition 3.3 A situation is an activity performed within a context [BH09].

It is temporal and changes immediately if the context or the activity changes. The
notation is a very important construct for objective coordination. Together with the
social rules it can be used as an input for the coordination management, since it includes
all objective coordination elements such as contextual information (spatial and social
dependencies) and the activity (task dependency).

3.8. Physical and Social Laws

Laws are used to guide and control the behavior of a system. We distinguish between
physical and social laws. A law is made of a set of rules. Each rule treats a speci�c part
of the law.

A physical law is static and can only be changed by the creator of the closed system.
Laws mostly describe physical behavior in the physical world. No entities living within
the physical world (like humans) can change them. Also laws hold equally for all entities
and exceptions are not possible.

In contrast, social laws are changeable by the entities of the system. For instance the
laws of a country are changeable by its government and there might be many exceptions
for certain situations.

De�nition 3.4 A Social Law de�nes how entities interact with each other and how social
structures are created.

A social law can be understood as a guideline for activities and interaction between
entities. It can be de�ned for physical and virtual structures as well as for tasks (�gure
3.9). Sub-entities always inherit social laws from their parent. A social law can be
modi�ed or overwritten by the sub-entity. For instance the laws of a country also applies
to its states, but a state might extend some of the laws.



3.9. Observer 23

Each social law might also declare what must be done if an entity violates it. The so
called penalty actions are executed by entities responsible for keeping the system stable.
The law has to be checked during the coordination management and governs the objective
coordination. After each check, a list of executable actions is produced. For instance,
in a democracy the judiciary checks if a human violates a law. After the checking some
actions might be taken. A di�erent authority takes care of this, the executive authority.
Social law can evolve over time. Some entities might be authorized to modify or add
new rules in order to optimize the coordination and the interaction behavior (subjective
coordination).

3.9. Observer

So far we described how the system is made. For closed systems using only objective
coordination this might work well. But for open systems or subjective coordination,
we have to change our point of view. For instance, the system engineer of a pervasive
computing system is part of the system itself. He acts as an observer if he is maintaining
the system, but he is also an actor and is observed by the system.

The view of an observer onto the system is not absolute, it is relative. He has a relative
perception onto the part of the world he observes. His point of view is reported to other
entities and used to coordinate the system. We think that it might lead to undesirable
behavior, especially in coordination, if the relativity is ignored. This section explains how
the relative point of view is treated in our model and in�uences the system.

3.9.1. Point of View

The perception of structures, activities and roles is done by observers. As described in
KUI2 by Pascal Bruegger in [BH09] entities are observed by an observer from a speci�c
point of view. We consider a view as a �ltered and a speci�c representation of the world,
since it contains only part of this world.

To have a view the observer must �rst chose a viewer and a reference in time and space.
The viewer is a physical entity used by the observer to receive, preprocess and �lter the
information. A viewer can be seen as a port or as a tool (e.g glasses, microscope, ears
and eyes). On the other hand the view is a virtual entity. The properties of the viewer
and the chosen physical references in�uence the view:

� Focus : the focus is a property of the viewer, which includes the direction, the range
at which the observation starts and the level of depth to which the observation goes.
For instance an astronomer uses a telescope as a viewer to focus on a part of the
universe. The range goes up to the border of the universe. But a biologist observes
the world di�erently. He might focus on cells using a microscope. The range will
go down to the level of chromosomes.

� Location : the location is part of the chosen physical reference. It in�uences what
an observer might see in his view. According to Albert Einstein's general relativity
theory, even the time depends on the location (�eld of gravity).

2Kinetic User Interface



3.9. Observer 24

Figure 3.10.: Observers are using views to observe entities

� Motion : the observer gets a di�erent view of a situation if he moves. The motion
depends on the chosen reference. For instance if an observer is traveling in a train,
to him it looks like the landscape is moving. The observer knows only by experience
and knowledge that he is moving, not the landscape. And again speed in�uences
the time clock of the observer according to the theory of general relativity.

This shows that the view always gives a relative perception to the observer. He tries
to interpret the information he collects through the viewers used. The interpretation of
the observer depends on several internal properties of the observer such as intelligence,
knowledge and experience.

An observer can have many di�erent views at the same time (�gure 3.10). The eyes of a
human provide the visual part of the world, whereas the ears might provide a completly
di�erent view of the world. Both are interpreted by the human brain and together form
a picture of physical world. Some viewers allow to observe the observer himself in a
re�ective manner. A typical example are mirrors, used by humans to look at themselves.

An observer can detect many di�erent aspects of a system using a viewer. The following
list explains the most important ones for coordination:

� Relative structure : Each observer recognizes atoms in their environment (other
entities) using a di�erent level of granularity.

� Relative entity classi�cation : The observer categorizes the observed entities
according to entity classes and kinds into taxonomy.

3.9.2. Relative Structure

The perception of the entity structure depends mainly on the focus which includes the
direction, the level and the range of the observation (�gure 3.11).

The observer is able to sense atoms and the environment.Atoms are undecomposable for
the observer. The observer might recognize them as compositions using another view.
For instance, in traditional chemistry neutrons, protons and electrons are atomic entities.
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Figure 3.11.: Shows the observation of a structure.

Figure 3.12.: Shows the relative classi�cation of entities using the taxonomy Domain-
Class-Kind

For physicists at CERN, these nuclear particles are just compositions. This awareness
leads to the following list of structural elements:

� Relative atom : entity recognized as an atom

� Relative composition : entity which can be decomposed into sub-entities

� Relative environment : the observer observes entities within this entity. The
environment is outside of the observation but it in�uences its sub-entities.

Observation can be done on physical and virtual structures. Computers are able to
observe virtual structures whereas humans normally observe parts of the physical world.

3.9.3. Relative Entity Classi�cation

The classi�cation depends on the point of view and internal knowledge of an observer.
An observer is capable of classifying entities into classes and kinds. The following taxon-
omy is not exhaustive and can be easily extended with new kinds for any speci�c model
(�gure 3.12).

� Agent : entity able to sense the environment and act upon it. It is also capable of
changing the environment autonomously [Sch01].

� Actor : an agent performing an activity

� Observer : an agent observing other entities and evaluating their situation
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Figure 3.13.: a) 3 agents connected with each other through ports. b) shown in the entity
tree

� Artifact : entity which is made or changed by an agent. It is regarded as dead or
passive entity, mostly used by agents to perform an activity.

� Tool : an artifact used to by an actor to perform the activity

� Port : an artifact used to exchange information

� Viewer : an artifact used by an observer to look at other entities

� Object : any unspeci�ed entity, like natural resources

� Place: an entity used as a place to perform an activity

Entity classi�cation does not distinguish between virtual and physical entity. This is
de�ned in the entity ontology.

Agent

An agent has the capacity to modify its internal state or its relations to the surrounding
environment. Commonly the agent senses the environment using sensors and reacts
depending on the sensed information using its e�ectors. For instance a human uses the
senses: sight, hearing, touch, taste and smell to get information from the environment.
Depending on the result of the processed information the human can act within the
environment using several e�ectors such as limbs, �ngers, head and speech. We use the
notation of a circle with a rotating arrow to express agents (�gure 3.13).

Port

A port is special artifact used for communication. An entity can send or receive infor-
mation through a port. A port is represented by a black bar (�gure 3.14).

A port can be modeled as a sub-entity of any other entity. It is always an atom. An entity
can receive information through a port only if the port is coupled to that entity (�gure
3.14b). If uncoupled ports can be coupled dynamically. We call these ports removable
ports, whereas static coupled ports are irremovable ports [TCH05]. Section 3.10 decribes
ports in more detail.
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Figure 3.14.: a) Shows the notation of ports in block notation b) or tree notation

3.9.4. Relativity of a System

How a system is structured and who belongs to the system depends on the observer
point of view. It exists only one closed system, which is called the universe. By de�nition
there no entities exist outside of the universe and therefore there is no interdependence
with the outside of the universe. All other systems are open systems, even if the interde-
pendence is minimal (there is at least one spatial temporal relation to other entities).

De�nition 3.5 A system contains two or more entities which are in relation to each
other. It has a clear border which de�nes which entities belong to the system.

A entity can be considered as a system if it contains other entities. For instance a human
can be considered as a complex system with many sub-entities. The border is normally
de�ned physically, but in some models the system of a human includes also the aura. In
this case the system is a virtually entity overlapping other entities.

If the system contains an actor then the system is a live system. On the other hand if
the system only contains artifacts or objects the system is a dead or static system.

3.10. Communication

The coordination within a system in�uences the communication. Coordination helps
to bring the right entities into relation and provides them possibilities to communicate.
We can state that communication is a sign-mediated interaction which includes all types
of information exchange between two or more entities. It is mostly done as a two-way
process, where both sides interact with each other. Nevertheless, one-way communication
is possible too.

De�nition 3.6 Communication is the process of transferring information from one en-
tity to one or more entities.

In a more technical approach communication can be modeled using di�erent levels and
protocols to control information exchange. The generic model distinguishes 3 layers:
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Figure 3.15.: basic communication paradigms: a) peer-to-peer b) broadcast c) multicast
and d) generative communication

� Pattern : how and where is information transferred?

� Paradigm : what paradigms exist in order to communicate?

� Protocol : what protocols are used?

3.10.1. Communication Pattern

A communication pattern describes how messages are sent between entities. M. Schu-
macher proposed several communication patterns in [Sch01] (�gure 3.15).

� Peer-to-peer communication : the messages are sent directly to an entity

� Broadcast communication : the message is sent to all entities in the system.
Entities interested in the message evaluate it; all others drop the message.

� Multicast communication : the message is sent to a speci�c group of entities.
The broadcast is a special type of multicast communication where as the group is
the universe.

� Generative communication : the message is sent to a blackboard or a pool.
Entities read the message any time after transmission (asynchronously).

In order to implement a communication pattern, ports and communication channels must
be properly de�ned.

Communication Channel

Once two ports are connected they communicate over a media called a communication
channel. The channels are mediated by the coordination. The communication channel
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Figure 3.16.: a) unidirectional communication between two entities b) bidirectional com-
munication realized with two inverse directed communication channels

is de�ned very generically using following de�nition given by Shannon and Weaver in
[SW49]:

De�nition 3.7 A communication channel is the medium used to transmit a signal from
transmitter to receiver.

It's important to note that the communication channel is always unidirectional. In-
formation can be transmitted only from one entity to another. To setup bidirectional
communication, two inverse channels are needed (�gure 3.16).

Because it is possible to have multiple receivers we use a modi�ed de�nition from the one
above:

De�nition 3.8 A communication channel is a medium used to transmit information
from one entity to one or more entities.

This allows us to implement patterns sending one message to multiple receivers over the
same channel.

Communication Ports

Ports help to separate the entity from other entities when communicating. Two types of
communication can be setup: identi�ed and anonymous. In identi�ed communication the
participating entities know each other. On the other hand in anonymous communication
the entities have no knowledge about their communication partners.

Before two entities can communicate with each other, their ports must be connected. The
connection process �rst checks if the ports match. This can be done either explicitly by
an entity or implicitly if the context of an entity changes. For instance all people hear
the radio when they are close to it. Their ears are connected to the speaker of the radio
in a implicit way.

The port matching depends on the port features. The following list was de�ned by Oliver
Krone in [KCDH98] and shows some possible basic features for port matching:

� Primary features : they de�ne the semantics of a port
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Figure 3.17.: Shows how communication between an uncoupled port works. a) caller
connects to the port. b) port rings. Ringing is a broadcast to all entities
nearby. c) one of the entities gets coupled (connected) to the port. d) caller
�nally communicates with an entity.

� Communication structure, like peer-to-peer, broadcast, generative communi-
cation

� Synchronization type, like synchronous or asynchronous communication

� Orientation, like input, output or in-out

� Secondary features : describe the characteristics of a port

� Saturation: denotes how many connections at once are allowed for communi-
cation (from 1 to in�nite)

� Lifetime: declares how many messages can be passed to the port (from 1 to
in�nite)

� Protocol: describes the accepted communication protocols

If a port is coupled to an entity the port is active otherwise it is inactive. The coupling
between an entity and a port is called an interface. There are removable ports and
unremovable ports. For instance a telephone is removable whereas the human's ear is
unremovable. In our model we allow the connection to an inactive (uncoupled) port. For
example, somebody calls a mobile phone, the mobile phone will ring until somebody is
coupled to the phone port and answers the call (�gure 3.17).

Port Types

So far we have seen ports as an entity concerned with receiving or sending information.
Ports can be devided into 3 main groups:

� Source and Slot : ports of this type are used by entities to send and receive
information

� Mirror : a mirror re�ects the information about an entity. It can be used as a
relay to indirectly communicate with entities. For instance a driver uses the back
mirror to see whats behind a car. Mirrors can be used also as a direct re�ection
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Figure 3.18.: Shows di�erent port types. a) passing information from inside a room to
the outer world. b) passing information from outside into the room. c) A
mirror re�ects information inside a location

Figure 3.19.: A blackboard is not just a port, but an entity implementing a generative
communication paradigm

of information. For instance people look directly into a mirror to check if their
hairstyle is okay.

� Window : people staying inside a room can see the outside world through a window.
The window passes the information from outside into the room (�gure 3.18c). A
window can be transparent in one or both directions. It can even reject some types
of information. A window is therefore also called a �lter.

Blackboard Communication

Blackboard communication is an implementation of a generative communication pat-
tern. Many di�erent communication paradigms can be implemented using a black board.

A blackboard is an entity with ports (see �gure 3.19) which takes messages and puts them
on its board. Any entity can read the message as long as it stays on the board. Once
an entity removes a message, it is deleted and no longer available for other entities. The
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Figure 3.20.: Taxonomy of communication classi�cation

blackboard can event support privacy in the sense of hiding some messages from other
entities. Only some dedicated entities might have access to private messages.

3.10.2. Communication Paradigm

In contrast to communication patterns the communication paradigms are situated on
a higher level. They deal with the communication semantics and the e�ects they have on
entities rather than the syntax. Generally there exist two main paradigms: Interaction
and Non-Interaction. By interaction we mean any kind of action, e. g. communication
or physical forces, that occurs as two or more entities have an e�ect one another. Since
we are dealing with communication two communication paradigm classes can be de�ned:
interactive and non-interactive (�gure 3.20).

To distinguish between the two communication paradigms the message and the content
�ow must be formalized. In classical distributed systems a happened-before relation,
denoted by �, is de�ned [CD88]:

1. If ∃ process (entity) pj : e�je´, then e�e´

2. For any message m, send(m) �receive(m), where send(m) is the event of sending
the message, and receive(m) is the event of receiving it.

3. If e, e´and e�are events such that e�e´and e´�e�, then e�e�

The Lamport clock is a simple implementation by which the happened-before ordering
can be captured numerically. Each process maintains a software counter which is mono-
tonically incremented at each event. An other implementation are the vector clocks,
which help to generate a total order of events [CD88].

To model interaction we have to de�ne a new relation called has-an-e�ect-on, denoted by
;. This relation includes the happened-before relation and takes the semantic dependency
between messages into account. In other words, if the content of a message m2 depends
on the content of a message m1, we denote m1 ; m2.
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Figure 3.21.: Examples of communication paradigms

An interaction involves two or more entities and at least two messages which depend on
each other. Generally there are 3 types of entities involved when communicating:

� Proactive Entity : an entity which initiates a communication

� Reactive Entity : an entity which responds to a received message

� Passive Entity : an entity which is receiving messages but is not responding at all

Figure 3.21 shows some examples of the communication paradigm using the interactive
and non-interactive paradigms. a) and b) show non-interactive communication. b) m1
and m2 have a causal dependency. c), d), e) and f) show interactive communication
patterns. In d) the interaction occurs between E1 and E3, where as in f) the interaction
occurs between E1 and E2, and between E2 and E3.

At the beginning of an interaction an entity has to act proactively by sending a message
to another entity and this entity reacts to this message by sending the response. The
interaction will stop as soon as an interacting entity receives the last message and does
not respond to it.

Non-interactive communication can be split into two di�erent kinds, active and passive
message exchange:

� Passive : an entity is receiving messages, but is not responding to them (no feed-
back or acknowledgment)

� Active : an entity is sending messages but not receiving any acknowledgments

Interactive communication can be split into two extreme, intentional interaction and
incidental interaction. Alan Dix in [Dix02] de�ned a continuum for interaction based on
the expected feedback. On one end we have intentional interaction. Feedback is expected
by the interacting entity. On the other end incidental interaction is de�ned. The entity is
not aware of or does not expect any feedback. Between the two extremes the di�erences
are often not clear. They depend on the level of intention and the expectations of the
entity involved in the interaction.
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� Intentional interaction : an entity explicitly interacts with his communication
partner and expects feedback

� Negotiation: the negotiation process between entities generates temporary
agreements. The agreements can be re-negotiated in case of need (e.g change
of context).

* Bilateral negotiation: two entities (or parties) are participating in the
negotiation

* Multilateral negotiation: more than two entities (or parties) are negotiat-
ing on one subject

� Trading : an entity tries to buy or sell some resources. The law of demand and
supply takes control over this process.

� Bidding : a special type of buying. The entity with the highest bid gets the
resource (or task).

� Incidental interaction : an entity implicitly interacts with another entity (unin-
tended). Feedback is not expected.

3.10.3. Communication Protocol

Protocols help to structure and control the communication. They govern the way in
which entities communicate with each other using a set of rules. Without protocols the
entities would not understand each other.

De�nition 3.9 A protocol is a set of rules governing the communication between entities.

Communication can be organized in many ways. Based on the work of Ch. W. Morris
in [Mor71] communication can be seen as a process controlled by three levels of semionic
rules:

� Syntactic rules : relations among signs in formal structures

� Semantic rules : relations between signs and the things they represent

� Pragmatic rules : relations between signs and their e�ects on those who use them

Whenever a protocol is de�ned these three levels of semionic rules have to be considered.
Not all levels are properly de�ned. For example, pragmatic rules are often implicitly or
informally de�ned within a protocol speci�cation.
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4.1. Introduction

This chapter focuses on a coordination model for computer science which is based on
the generic coordination model. We show how the model can be adapted for pervasive
systems, but do not apply it to any other computing systems suchas multi-agent-systems
or grid computing. Therefore we call this model the pervasive coordination model, PCM.

In pervasive computing the information processing moves out of a user's focus. The user
concentrates more on their task rather than on a tool like a computer. The purpose of
such a system is to support the user in their task. Pervasive computing has been de�ned
as context aware applications which use sensors to observe the activity and the context
of participating users.

Pervasive computing systems can be extremly complex to setup and to manage due to the
heterogeneous nature of the devices (smart phones, sensors, networks). Weiser in [Wei91]
has introduced the concept of calm technology. In his concept, the user is increasingly
surrounded by computing devices and sensors. In order to avoid an unneeded cognitive
load for the user to interact with those devices, it becomes a nessecity to limit the direct
interaction. Coordination is an important issue to reduce unnecessary interaction with
computing devices. It helps to provide useful and expected information in time at the
right place. This can be achieved for instance by context and activity awareness. The
computing system has an impression of what the user is doing (activity) and under which
circumstances (context).

The rest of this chapter is organized as follows: First, we apply the generic coordination
model to computing systems and explain the di�erent coordination structures suchas the
physical, virtual and task structure. The explanations are valid for all computing models.
For pervasive computing we add a few extensions and explain how they �t into the model.
The last part of the chapter concerns the communication types in a computing system,
such as human computer interaction and networks.

4.2. Computer System

Traditional computer systems were and still are considered as closed systems. They
are used as input-process-output devices. The users (humans or other computer systems)
were situated outside of the system but interacting with it through well de�ned devices,
such as keyboards, screens, mice etc. The focus of coordination was mainly in man-
aging hardware devices and software components. To perform the needed coordination
processes the computer was equipped with an operating system handling all the depen-
dencies between running tasks and resources. For instance if two tasks open a �le both
are able to read the content, but typically only one task is allowed to change the content.
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In distributed systems the point of view changed slightly towards coordination of remote
devices and distributed resources. Computers were wired together using a network which
allowed them to interact with each other.

With pervasive computing, which is a sub-discipline of distributed computing, the user
has become an important element of the system. They are considered and observed by
the system and provide contextual information to get the expected services.

Before going into the coordination, the computing system must be structured. A com-
puting system is built with the following layers:

� Hardware : physical entities such as the processor, input-output devices, sensors,
actuators, bus systems

� Operating System (OS): software managing the hardware and providing an API
to access its functionality

� Middleware : framework providing services and functions on a higher level of ab-
straction. The middleware typically �lls the gap between the operation system and
the applications.

� Application : user and problem speci�c implementations

In earlier models the user was put on top of the application level, showing the direct
interaction User-Application (�gure 4.1). Nowadays the user is put at the hardware level
because the user interacts directly with the IO devices, such as keyboards, mice and
screens. The interaction between human and computer or between humans happens on
the same level. For instance when a human presses a key on the keyboard, he interacts
with the keyboard and gets a �rst feedback through his touch senses. The keyboard
sends a message to the internal computer hardware. The message is treated by the
di�erent software levels until it reaches the word processing application. The logic puts
the corresponding letter at the cursor position and generates a feedback message which
travels the opposite way up to the screen.

The proposed separation of coordination considers the fact that today a computer system
is built up of hardware, an operating system and applications (�gure 4.1):

� Coordination at the hardware level : the coordination is mostly hardwired and
done using simple communication protocols. For instance if two computers try
to send data over an Ethernet cable, the hardware coordinates the access. If one
computer detects a communication con�ict it will wait for a random time and then
try again to access the connection.

� Coordination at the OS level : the operating system manages the dependencies
between processes (activities) and system resources such as hardware devices and
system objects. Modern systems also implement security management to coordinate
user access.

� Coordination at the the middleware level : coordination in the middleware
manages many di�erent dependencies within a system. For instance it manages the
interdependence of processes by mediating communication spaces and channels, or
it might help to manage the dependencies between human activities for pervasive
applications.
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Figure 4.1.: The old model puts the user on the top. Current models put the user at the
hardware level interacting with the IO devices and sensors.

4.3. Physical Entity Structure

According to the generic coordination model each entity can exist only once in space
and time and overlapping is not possible. The following physical entity classes exist in
computer science:

� Hardware devices

� Network topologies

� Users

� Elements of programming languages

4.3.1. Hardware Devices

The name hardware denotes that the object it refers to exists in the physical world
of things. This implies that all hardware devices are physical entities. A computer is a
composition of di�erent devices and can be split into several sub-compositions suchas the
screen, a keyboard, a hard drive, a processor etc. Each of these devices can be split again
into several sub-entities. For instance the processor is made of registers, the ALU, clocks
and internal buses (�gure 4.2).

In this document, we de�ne computers as all hardware devices used to compute data,
such as personal computer, main frames, mobile devices or other micro-controller based
devices.

A computer has a physical location which gives the environmental context. For traditional
computing this context is often not relevant and is ignored. But, for pervasive computing
the location and the environmental context gives useful information about how the device
is used. Also, mobile devices often contain various sensors which might be usable to
observe the human user of the device.
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Figure 4.2.: Computer hardware can be separated into several hardware entities.

The following list is not exhaustive, but gives an overview of which physical entities are
considered in pervasive computing in addition to those normally used in computer science:

� Location of the computing device

� Any sensors attached to the device

� Humans

4.3.2. Networks

The di�erent hardware components are often connected with each other by a network.
The network allows them to exchange information. There exist many di�erent network
topologies like:

� Bus network : all components are connected to one communication line. Two
main techniques are common to manage bus access.

� A master is controlling the bus and grants access to other devices. The mas-
ter entity is the coordinator of the communication. Examples are PCI bus,
Pro�bus, ASI Bus.

� A protocol (rule) is used to detect if the bus is free and to handle data collisions.
The coordination is more implicitly given by the rule each device has to follow.
The most famous example is the Ethernet protocol using coaxial cables.

� Star network : all components are connected to a central device called switch.
All messages arriving at the switch are sent from there to the target stations. The
switch uses an addressing protocol to locate the target station. For instance an
Ethernet switch processes the data on the network layer of the OSI model. The
switch is responsible for sender-to-target package delivery including the routing
through intermediate hosts.

� Ring network : each host connects to exactly two other hosts forming a closed
loop. The data travel through all nodes, which read and handle the data package.
The ring network performs very well for heavy network loads and does not require
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a special server to manage the connectivity. Note that the famous token ring uses a
ring topology, but the ring is not wired. It uses a wired star topology and a special
software protocol.

� Tree network : a network is split into several sub networks forming a tree. Each
sub-network has its own address range and is managed independently as long as
local devices are addressed. The parent node is managing all messages which have
to be passed to a device in a di�erent branch of the tree. A typical example is the
Internet using IP addresses.

� Mesh network : the devices are directly connected to each other. Each connected
pair has its own connection line. A fully connected mesh network has a complexity
of O(n2) and is very costly for larger networks. Often partially connected mesh
networks are built to create redundancy within a network.

To summarize the coordination at the hardware level, the management is often hardwired
or at least uses static protocols. Many networks use software layers to realize a more
complex coordination.

4.3.3. Human Users

The human user is the central entity of a computer system. Former models often
gave a secondary role to the user. This often led to bad or unsatisfactory design of the
hardware and software components. Nowadays the user plays a central role. With mobile
computing and pervasive computing the user is the entity to be considered and observed.

There are other humans to be considered in a computing system suchas system architects
and engineers who design and build the system and later, the system engineers maintain
it.

Both human groups are important to the system and often the same human plays dif-
ferent roles. Within the coordination model for pervasive computing we propose that
all participating humans are entities of the system and must be considered at all times.
By doing this we believe that the system will evolve in a smooth and practical way to
accommodate the needs of the human users.

4.3.4. Elements of Programming Languages

A programming language can be represented by an abstract syntax tree (AST). The
nodes of the tree can be seen as physical entities even though they describe the behavior
of pure virtual entities. All leafs of the tree represent terminals of the language whereas
intermediate nodes simply represent a composition of terminals and other composite
literals.

There might be more than one tree representing the same programming code. How the
tree is built up is relative to the interpreter (observer) of the programming language. But
once the interpreter has parsed the literals, each terminal belongs unambiguously to one
parent node of the tree. Therefore the elements of the programming language meet the
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Figure 4.3.: Parse tree representing a program code

conditions of the physical structure. The example in �gure 4.3 shows a simple syntax
tree of the programming code

1 if (x > 0) then
y:= −x;

3 else
y:= x;

Listing 4.1: Example code to show the abstract syntax tree (AST)

4.4. Smart Environment

The pervasive coordination language helps to manage the dependencies of activities
in an physical environmen enriched with sensors, actuators and mobile devices. The
environment is not only observing the humans but is also able to interact with them, for
instance using services. We de�ne a service as:

De�nition 4.1 A Service is the performance of any duty or work for another entity [9].

An enriched environment is called a Smart Environment. The goal of smart environments
is to make the life of humans more confortable by replacing their hazardous work, physical
labor, and repetitive tasks with intelligent and pervasive agents.

De�nition 4.2 A Smart Environment is a physical world that is richly and invisibly in-
terwoven with sensors, actuators, displays, and computational elements, embedded seam-
lessly in the everyday objects of our lives, and connected through a continuous network
[Lew04].

The smartness of the environment is in�uenced by two major aspects: 1) how well co-
ordination is performed and 2) how intelligent the provided services are. For instance a
location-based internet search is an intelligent service providing useful information. But,
if the service is never o�ered to the humans (or is o�ered at the wrong time), it be-
comes useless. The human users will experience a smart environment only if the service
is proposed or available in the correct situation.
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Figure 4.4.: a) software structure is normally a graph. b) tree organized software struc-
ture. Software components are able to reference each other (dotted line).

4.5. Virtual Entity Structure

A computer system is typically designed to treat di�erent aspects of the physical world
at a higher level of abstraction using logical and mathematical terms. Whereas the
gathering of information through hardware devices is done on the physical structure,
the treatment of information is done in the logical or virtual structure. The following
components of the computing system belong to logical or virtual structure:

� Operating System : the operating system (OS) deals directly with the hardware
devices (physical entities) of a computer system. Often the OS abstracts the hard-
ware devices using drivers and the coordination is done using more abstract system
objects. It manages the dependencies between those objects and the processes.

� Semantics of the program code :

� Software components

� Applications and services

� Virtual Machines : a virtual machine is able to run on distributed hardware
platforms

� Virtual Memory : the virtual memory is an abstraction of physical memory. A
virtual memory page can exist in RAM, in the cache and on the hard drive at the
same time. Typically the operating system takes care of their management. A
virtual address is mapped to a physical RAM address by the memory mapping unit
(MMU) of the processor.

4.5.1. Software Components

All software components and objects are virtual entities. Depending on the intention
of the system some of them can be treated as physical entities. For instance the software
representation of the physical world can be designed to have a similar behavior as physical
entities (virtual reality, simulation).

In most cases the structure of the software is a graph (�gure 4.4a). Software entities refer-
ence other entities and form a tight net of relations, the virtual structure of the software.
In order to model the physical world (or similar behavior) special software framework
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are used. They help to simplify the software structure using a tree of ownership. Every
entity has an owner except the root. An entity might be decomposable into several sub
entities. This tree is able to represent a physical structure. All other relations are strictly
de�ned as references and represent the virtual structure (�gure 4.4b). Examples are:

� Graphical User Interface designs such as VCL components of Embarcadero[1] or
QT library [BS06]

� XML document structure which is a tree and is used to structure the data [11]

� The Entity Space of the uMove framework, which represents observed entities
[BH09]

4.6. Task Structure

The task structure manages the dependencies between tasks. Within a computer sys-
tem two main groups can be distinguished:

� Computer tasks

� Human tasks

4.6.1. Computer Tasks

In modern operating systems, computer tasks are de�ned as processes. A process is
the activity of a micro processor and its context (state) is stored within the registers of
the micro controller. While processing the program code (description of the activity) the
processor builds up relations to di�erent system objects. For instance it allocates parts
of the memory to store the processed information, or it opens a �le on the hard drive for
reading. Those dependencies are stored in registers or private memory pages.

Operating systems often implement a multitasking feature. This allows to sequentially
assign di�erent processes to one processor by interrupting other running processes. This
coordination process is called scheduling and allows to parallelize processes. The context
of each process (including all dependencies) is stored in a process table entry and must
be updated and restored when switching from one process to another. Such an entry
typically contains a process ID, values of the processor registers and a program counter.

Multiprocessor systems work in the same way, but involve the additional task of coordi-
nating the access of entities. For instance the problem of mutexes and memory caching
involves advanced coordination and communication techniques.

There exist di�erent scheduling strategies. The following list gives a brief overview of the
most common strategies:

� First-Come First-Served : simplest non-preemptive scheduling algorithm using
a FIFO queue (First In, First Out)

� Round-Robin Scheduling : each process receives a time interval (quantum). The
process is switched if it voluntary releases the processor (sleeping) or if the time
interval exceeded. If the process is not terminated it is put at the end of the waiting
process queue.
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� Priority Scheduling : similar to round-robin but uses a priority queue for schedul-
ing. Each process has a priority to be considered. The process with the highest
priority is in the front of the queue and treated next.

4.6.2. Human Tasks

Today computers help to organize and plan the work of humans. Human tasks are often
managed by highly specialized applications (for instance MS Project or MS Outlook1).
The tasks are normally prede�ned by name, duration and the resources needed. Smart
tools help to detect con�icts and work overload.

In pervasive computing human tasks are not prede�ned, but observed and perceived.
The dependencies between tasks are often very hard to detect. In order to simplify their
detection, smaller pieces of a complex task, called activities, are observed. One of the
main goals of pervasive computing is to provide suitable information about the current
user's activity and context to di�erent interacting objects, application and the user itself.

4.7. Physical and Social Laws

The generic coordination model de�nes physical law as static and unchangeable, whereas
social laws are dynamic.

4.7.1. Physical Laws

Physical laws give strong restrictions. One of the main restrictions is that a computer
can not do more than what a Turing Machine is able to do [Koh07]. For instance there
exist problems which no computer can solve, because it is proven that these problems
can't be solved by a Turing Machine. There also exist problems which can only be solved
with Turing Complete languages (using while or goto). Some languages which are not
Turing Complete are not able to solve these problems. Therefore the computing system
and the programming language restrict the domain of solvable problems. This restriction
is given by a physical law which holds for all computers.

Another example of physical restriction is the speed of light, which is used to transmit
information between two systems. If a system queries data and expects a responce within
a �xed timeinterval, the target system must be in range, meaning the time for sending,
processing and sending back should not exceed the expected timeinterval. For instance
the rate of the processor clock limits how far the internal processing registers can be
located in order to receive the stored information before the next clock interval.

For pervasive computing other physical restriction must be considered. Observing the
physical world is limited by the restrictions on measuring physical quantities, such as
temperature, gravitation, pressure, etc.

1Products of The Microsoft Corporation®
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4.7.2. Social Laws

Social laws are de�ned and changeable within the system. In traditional computer
science many operating systems and applications use security settings. Security settings
are used to grant access to information and the use of devices for di�erent user groups. In
general there are two types of security settings: permissions and restrictions. Permissions
are used to grant access to a system in which access is blocked by default. Restrictions do
the opposite. They are used to limit access to a system where access is open by default.

On the other hand, there exists unwritten social laws on how to use and work with
computers. For instance how an employee writes an e-mail to his customers is culturally
and socially dependent.

4.7.3. Social Laws for Pervasive Systems

For pervasive systems a more �exible way is needed to govern the interaction and con-
nectivity between the di�erent human users and services. Instead of having static security
settings we propose context related security settings. For instance, before establishing a
connection between two entities the social laws of the environment must be evaluated.

4.8. Observer

There exist di�erent observers within a computer system suchas humans, sensors or
pure software observers. A human observer mostly observes the system in order to im-
prove the performance and to �nd bugs. The human uses his senses to observe the output
devices such as screens, printers etc. This view can be extended by special software tools
which help to monitor and capture data. Examples are the program debugger, network
monitor and virus scanner.

The sensors help to get some states of the computing system, such as temperature and
power level or consumption. Current personal computers are equipped with special power
safe monitoring which helps to regulate the processor ventilation fan or the screen back-
light. Sensors are also used by industrial computing to observe the state of a machine and
to react upon changes using actuators. Typically a PLC (programmable logic controller)
is used to logically combine the states of the sensors and to control the output signals.

The last group of computing observers are software observers. They help to observe
software components and their state changes in the virtual structure. There exist many
di�erent kinds of software observers. The following list gives a short overview of the most
important ones:

� Observer-Subject pattern : the pattern is proposed by Gamma et Al. [GHJV95].
It is one of the most used in object oriented software engineering. The pattern
helps to logically separate the observer from the subject (observed entity). Some
implementations (like Java) use the name Listener instead of Observer.

� Hooks : hooks are used to observe the communication between two entities. For
instance the Windows operating system o�ers them on the API. The hook is in-
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stalled between the sender and the receiver to observe and monitor messages (man
in the middle).

4.8.1. Entity Classi�cation

In traditional computer systems observers use a more or less static entity classi�cation.
The classi�cation is given by the design of the system and contains actor, software agent
and artifact.

Actor

Usually we de�ne the human user as an actor in the computing system because he is
capable of doing and acting in his environment. The type of design of such system is called
user centered design. Most applications are designed this way, like desktop applications
and internet services.

The computer often plays the role of actor for technical application designs. The focus
is the work and the activity of the computer. Examples for technical application designs
are grid computing and multi agent systems (MAS).

Software Agent

A software component which is able to sense its environment and act upon the sensed
information is called a software agent. Software agents usually run in threads and pro-
cesses. As we have seen, the process (or thread) is the activity of a software component.
The thread allows an agent to change the internal state autonomously and to exchange
information with the environment of the component. The behavior of an agent is typically
written in a programming language [Sch01].

Artifact

All data generated by humans or computer systems are artifacts (e.g. �les, print outs).
Artifacts are subdivided into tools, ports and viewers. Instead of adding a new kind of
entity for information, we de�ne information as a virtual tool to perform an activity.
Since this classi�cation is relative, the following examples give an idea, on how entities
can be classi�ed.

� Tools : the computer generated data is used as a tool in for further activities. Also
all IO devices can be seen as tools since they are used as such by humans.

� Port : all interfaces between humans and other computing systems are ports(screens,
sensors and network interfaces). Software ports are used to access the functional-
ity of software components. Typical software ports are interfaces used in Java or
CORBA. Also the methods of a Java class can be seen as a port to communicate
with an instance of the class.

� Viewer : the viewer is a �lter used to capture information. A viewer could be a
network �lter or a graphical user interface showing only relevant information.
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Figure 4.5.: A pervasive computing system

4.9. Observer in a Pervasive System

A pervasive system observes the physical world in order to get the context and the
activity of physical entities and provides contextualized services to them. In our holistic
approach the pervasive system includes not only the computing system (e.g. sensors,
networks, software) but also all physical entities observed (e.g. humans, cars).

As we have mentioned in the generic coordination model the perception of an observer
is relative. The observer is not able to understand the perceived world completely, but
rather creates an abstraction, a model to simplify the world for his needs. This model is
called an internal representation (�gure 4.5).

In this sense we can describe a pervasive computing system as follows:

� A pervasive computing system observes entities in the physical world. Depending
on the observation the system models an internal and relative representation of the
observed situation and behaves according to rules (programmed logic).

� In the literature the internal representation is called context aware if it includes the
observed environmental context of the physical entities [ADB+99].

� If the internal representation also takes the activities of the physical entities into
consideration, it is called activity aware or motion aware system [BH09].

When we deal with observation, we face a duality between the reality and its internal
representation. This fact must be considered when designing a pervasive system in order
to analyze and improve its behavior.

4.9.1. Sensor

A sensor is a device which transforms a physical quantity into electrical signal. This
transformation process is also called sensing and is a primitive level of observation. Nowa-
days sensors become smarter and also pre-process the raw data and add some semantic
to it and in this case we use better the word observing rather than sensing.

De�nition 4.3 A method of data collection in which the situation of interest is watched
and the relevant facts, actions and behaviors are recorded [4].
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The world is observed by the sensors connected to a pervasive system. Each sensor allow
to have a view onto a part of the world. For instance a temperature sensor gets the
temperature of an entity. The range and the sensitivity of the temperature sensor is its
view. If the temperature is changing less than the sensitivity, the change is not captured
by the sensor.

Sensors are able to capture di�erent aspects of the pervasive system.

� Context : one of their main goals is to capture the contextual information of the
observed entities and their environment.

� Activities : for activity aware and motion aware application, sensors also help to
capture the motions of the tracked entities.

There exist two groups of sensor usage:

� Endogenous : a sensor which is attached to an entity and is able to sense data
from that entity. Typical examples are temperature sensors mounted in a room to
observe its temperature or sensors attached to a human observing his heartbeat.

� Exogenous : a sensor which is attached to an entity but is observing the environ-
ment around the entity. Examples are temperature and light sensors attached to a
mobile device. They observe the environment of the user of this device.

This distinction is necessary in order to treat and store the contextual information in
the right place. For endogenous captured data the contextual information belongs to the
entity wearing that sensor. For exogenous captured data, the contextual data belongs to
the environment of the entity (its parent).

4.9.2. Internal Representation

The internal representation of the pervasive system is done with software entities. It
is a rough mapping of the physical world enriched with additional information about
the captured entities. It considers the physical structure of the entities, their context
information and relations with other entities.

We have shown in the generic model that the entities are organized in three structures
(�gure 3.2). We suggest that the same three structural elements should be used to model
the internal representation. This will help to give a more accurate representation of the
physical world.

� The physical structure is used to put the observed entities into spatial relation
(spatial dependency). This structure is organized as an entity tree (entity containing
other entities having themselves children and so on).

� The virtual structure is used to bring physical entities into social and logical rela-
tions (social dependency). This structure is organized as a graph containing physical
entities and other virtual entities.

� The task structure is used to put entities (physical or virtual) into relation if they are
working or used in an activity (task dependency). This structure can be organized
as a set of activities.
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Figure 4.6.: Internal representation of entities and tasks.

The �gure 4.6 shows how a virtual entity references other physical and virtual entities.
The referencing denotes that the virtual entity V1 is composed of physical entities E1
and E2 and the virtual entity V2. An activity is able to reference entities. For instance,
A1 references the physical entity E3 and the virtual entity V1. The referencing denotes
that the entities play a certain role within the activity (such as actor, place, tool). An
activity might have relations to other activities, meaning that an activity depends on
other activities.

4.9.3. Relative Entity Classi�cation

We have seen that entity classi�cation on traditional computing systems is done more
or less statically at the design phase. To be more �exible the pervasive system should
classify the entities in a more dynamic way depending on the point of view on the system
and the needs of the pervasive application.

Since the entity classi�cation decides how the context of the entity is used and interpreted
we propose a new way to set up the contextual settings for entities. Pascal Bruegger, in
[BH09], de�ned several contexts for entities like identity, location, structure and relations.
The activity of an entity is not considered as context, because activity is in�uenced by
the contexts of the participating entities. Therefore only the role, which an entity plays
in an activity, belongs to the context. The role describes how the entity participates in
the activity. The context can be split into the following main groups (�gure 4.7):

� Entity context : the entity itself can have many attributes describing the contex-
tual behavior, like identity, room temperature, humidity etc.

� Location context : the location context is naturally given by the entity tree.
The parent of an entity represents its location.
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Figure 4.7.: Organization of the entity context

� Structure context : the structure context tells if an entity is simple or complex.
Simple means that an entity is an atom, complex means that an entity is composed
of at least one sub-entity. This information is also given by the entity tree. The
geometry information of an entity also belongs to the structure context.

� Relation context : the relation context contains all memberships to virtual struc-
tures, such as communities, conversations, interactions. The social context is in-
cluded in the relation context. Physical relations (suchas inside, next-to or joined
relations) are handled by the structure context.

� Entity kind context : each classi�cation kind has its own context storage. For
instance the role of an activity is relative and might change depending on the point
of view.

The splitting allows two di�erent concepts to be followed: First, an observer which is
capable of entity classi�cation can classify them and create a new role-speci�c context,
without in�uencing another observer with its own point of view. Second, an observer can
query the context of an entity in order to see how it can be classi�ed.

4.9.4. Internal Observers

The pervasive system uses internal software observers to react to context and activity
changes. If a change happens the observer will reevaluate the situation and each new
situation will be reported at the application level (�gure 4.8).

Dedicated observers also report situation changes to the rule evaluation component. Rule
evaluation is part of the coordination model and produces actions to coordinate the
system.

4.10. Communication

Communication in a computer system is very essential. There exist many levels of
communication, such as:

� Human-Computer-Interaction (HCI)

� Network communication

� Interprocess communication
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Figure 4.8.: Shows the chain of context and activity evaluation.

� Programming languages

4.10.1. Human Computer Interaction

Human computer interaction is an important research �eld in computer science. It
analyzes how humans interact with a computing system. Interaction can be split into
two main �elds, intentional interaction (explicit interaction) and incidental interaction
(implicit interaction). Traditionally, humans use input devices such as mouse, keyboard
and touch panels to input data into a computing system. The feedback is mostly given by
the screen or by audio devices. This kind of interaction clearly belongs to the intentional
interaction paradigm.

In pervasive computing new ways of human-computer interaction are explored. Most of
them are intended to be implicit. For instance the uMove framework [BH09] uses the
motion and activity of a human actor as a primary input modality. In a concrete case
study called Smart Heating System in [BPH09] the activities within a room control the
heating system.

4.10.2. Network Communication

Computers are able to communicate together through a computer network. There exist
many di�erent network types each one having its special �eld of operation. Networks are
characterized by the hardware protocols and the type of communication media. A few
examples are:

� Bus : hardwired parallel or serial communication. Mostly used for internal commu-
nication between the processor and peripheral devices.
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Figure 4.9.: Unix pipe as a communication media between two processes p and q.

� Ethernet : wired serial communication. Used to link di�erent personal computers
and server stations together.

� WiFi and Bluetooth : wireless serial communication. Used by mobile devices
(phones, PDA, Laptop) to access the network through the air.

Software protocols are put on top of the hardware protocols. They implement di�erent
needs in order to communicate. Some of the needs are listed below:

� Addressing and look-up mechanism

� Security

� Fault tolerance

� Type of connection

� Messaging like UDP

� Transmission control like TCP

All communication patterns can be realized by network communication. Hardwired net-
works normally use the peer-to-peer pattern. Multicast and generative communication
are implemented by software layers, like for instance the UDP/IP allows multicast by
using special multicast addresses 224.x.x.x.

Networks using the air as a communication medium use the broadcast pattern. All
listening stations receive the packages. The target device is able to read the information
package using special security and addressing protocols. All other devices drop them.

4.10.3. Interprocess Communication

An operating system often o�ers di�erent techniques which allow two or more processes
to communicate with each other. These techniques are called interprocess communication.
The following list gives a non-exhaustive overview:

� Shared Memory : the operating system allows access to a shared page within
the memory. There are di�erent techniques for using this memory for information
exchange, like:

� Circular FIFO bu�er

� Blackboard (generative communication)
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Notation Meaning

x=y; syntactic: y communicates with x
semantic: y sends the value to x. The value of x equals the value of y
afterward.

x *= y; syntactic: y communicates with x
semantic: x is multiplied by the value of y and contains the result
afterward.

x = x * y; syntactic: x and y produce a result r which communicates with x.
semantic: x is multiplied by the value of y and contains the result
afterward.

Table 4.1.: Communication using the assignment of variables

� Message Passing : the most commonly used type of message passing is the MPI
standard (message passing interface). MPI was invented for parallel computing.
Typically all processes working on the same problem use MPI to explicitly exchange
task relevant information.

� Tuple Space : the tuple space allows generative communication in computer sci-
ence. It is an associative memory used in parallel and distributed computing to
store and read information tuples concurrently. The tuple space is also called a
blackboard. The service to access such a space provides methods like read and
write. Commonly known examples are Linda and JavaSpace.

� Shared Files : some operating systems o�er the possibility to use a shared �le to
exchange information. Unix for instance uses the notation of pipes "|" (�gure 4.9).
It mediates a shared �le which can be accessed by a process using the FIFO protocol.
The pipe implements the producer-consumer coordination process. One process
produces an output whereas another process consumes the produced information.

4.10.4. Programming Languages

We have seen that the elements of a programming language are entities. The pro-
gramming language also helps to express communication between di�erent entities. The
simplest way is to use the assign operator [=]. For instance x=y; denotes that y commu-
nicates with x. In C and Java the semantic meaning is sending the value of y to x (Table
4.1).

Another way to communicate is by calling functions. If a function f is called within a
function g, then g communicates with f (Table 4.2).

A higher level of communication in programming languages handles events. Events are
often sent by the operating system or by the middleware and are handled by program
modules. For instance the Java platform o�ers various action listeners to capture mouse
and keyboard events. Unix implements a similar approach using signals. Before handling
an event or signal a speci�c handler (function or object) must be installed.

Some programming platforms such as QT by Trolltech [BS06], use Event-Source and Slot
techniques. For instance the value source of a trackbar component can be graphically
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Notation Meaning

f(x↓); syntactic: call of function f and passing x as input parameter.
semantic: f receives the content of x.

f(x↓, y↑) syntactic: call of function f and passing x as input parameter and re-
ceives y as result.
semantic: f receives the content of x and returns the context for y.

f(x↓ ↑); syntactic: call of function f and passing x as input/output parameter
semantic: f receives the content of x and returns the context for x. The
semantic might change depending on the language implementation.

Table 4.2.: Communication by calling functions

linked with a value slot of a label. The trackbar then communicates directly with the
label by sending its current state.
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5.1. Introduction

A coordination language is the materialization or the linguistic embodiment of a coor-
dination model [GC92]. It o�ers syntactical meaning to implement an application using
that coordination model. Gelernter and Carriero stated in [GC92] that a coordination
language is orthogonal to the computational language by extending the coordination part
of the application. They developed a framework called LINDA. It is an extension to vari-
ous programming languages intended to be used for process creation, communication and

56
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Figure 5.1.: The coordination and context management are essential components in the
middleware for pervasive computing.

synchronization. LINDA is very generic and can be used for parallel computing as well
as for distributed computing.

The coordination language we propose is based on the pervasive coordination model.
This language provides an extension to the Java programming language in form of a
Java based library. The main di�erence between it and LINDA is that the coordination
is based on the context and activities of the participating entities and the given rules
of their environment. In other words the concept of LINDA is part of the pervasive
coordination language which is enriched by the new paradigm of pervasive computing.

This chapter is organized as follows: First a pervasive middleware is presented and an
overview on the di�erent software components of the middleware is given. Then the
internal representation of the observed entities is explained. This includes the de�nition of
entities, ports and observers. Afterwards, we focus on the coordination of communication.
A generic message passing protocol is presented together with a light version of the
pervasive services. This chapter concludes with the de�nition and programming of rules
and actions.

5.2. Pervasive Computing Middleware

Since our main focus is the scienti�c �eld of pervasive computing, we will �rst introduce
the architecture of a pervasive middleware. It is used as a framework to develop pervasive
applications. Figure 5.1 shows the di�erent components of the middleware and how they
are connected to each other.

� HCI : the human computer interaction components de�ne patterns for interacting
with a pervasive system

� uMove : the uMove framework helps to organize and store contextual information
for observed entities
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Figure 5.2.: The uMove Framework is devided in three main layers: sensor, entity and
observation.

� Coordination : the coordination component manages the communication between
di�erent entities. It creates communication channels and provides services to them
according the context and the activity.

� Monitoring : the monitoring helps to locate devices in a pervasive environment

� Communication Space : the communication space o�ers a space to exchange
information between di�erent systems

uMove and the coordination component together provide the complete coordination lan-
guage. The architecture of the coordination language is explained in the following sec-
tions.

5.3. Representation of the World

The representation of the world by entities (physical and virtual) is a part of the coor-
dination language. We call this representation the entity space. In our implementation
we separate the entity space from rest of the coordination. The idea is that the coordi-
nation component can be put next to any entity space. For pervasive computing we use
the entity space implementation of the uMove framework [BH09].

The framework uses a layered architecture to separate sensors, entities and observation
processing (�gure 5.2). The sensor layer implements the view of the pervasive system in



5.3. Representation of the World 59

Figure 5.3.: Entity classes available in uMove framework.

the physical world. Through this view the system gathers information about the physical
entities. The sensor gadget (Sendget) treats the raw data retrieved from the sensors and
converts it into contextual information for the associated entities. The Sendgets help to
hide the heterogeneity of the sensors. The entity layer on top becomes independent of
the di�erent sensor implementations.

The main component of the entity layer is the entity space. The entity space is used as
an internal storage for all observed entities. Di�erent managers help to create and update
the entity space. For instance the activity management helps to detect the activity from
the motion. The KUI Service is used to integrate and update mobile entities. It allows
to connect distributed entity spaces together.

The observation layer contains various internal observers. Those observers are used by
the software application on top of the middleware to observe parts of the entity space.
Each observer has a speci�c view of the entity tree. If a context or an activity change
has been detected the observer reevaluates the situation of the entities and reports the
new situation to the upper level.

5.3.1. Entity

In the current version of uMove there exist several entity classes. The system engineer
can extend the actual entity classes if needed.

The �gure 5.3 shows the entity class diagram:

� IEntity : the IEntity de�nes the generic entity interface

� ID : an entity must provide a unique ID. The universally unique identi�er
(UUID) of Java is used to be sure the ID exists only once in the universe.

� Parent : the entity parent gives the location of the entity. For physical entities
the location is always a physical entity. The universe is represented by null.
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Figure 5.4.: The message processor treats the incoming messages and generates new mes-
sages for other entities.

� Name: the name is a descriptive parameter only, used by humans to identify
an entity

� KUIEntity, AbstractRunnableEntity and AbstractCallbackEntity : are ab-
stract classes implementing the basic behavior of the di�erent entity types. The
abstract runnable entity is also called an agent.

� MessageProcessor : the message processor contains the computational part of
an entity

� Actor : the actor represents an observed physical entity e.g. place, human, com-
puter

� Identity : used to identify the actors. It includes entity ID, RFID tags etc.

� Context : storage of the contextual information

� Activity : current activity of the actor

� Location: physical and logical locations

� Observer : the observer entity is used to observe parts of the world. It is capable
of evaluating situations of entities.

� SituationManager : the situation manager treats the context and activity changes
of actors and reevaluates their situation status

� Viewer : the observer entity uses a viewer to observe parts of the world. The viewer
is used as a �lter.

� Sendget : the sensor gadget class used to integrate sensors into uMove

A runnable entity has two major ports in general to communicate with other entities
(an input and an output port). A message processor can be attached to each runnable
entity and it contains the algorithms to treat the incomming messages (�gure 5.4). New
messages are generated and handed back to the entity, which sends them over the output
port.

uMove comes with standard message processing, but the message processor can be easily
extended or replaced by speci�cally developped message processing.
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5.3.2. KUI System

The uMove framework provides an extensive API to handle the system components.
The KUI class provides methods for:

� Creating actors, observers, viewers and physical or logical zones

� Creating sensors and sendgets for various purposes like location, contextual infor-
mation or motion detection

� Starting and stopping a KUI service

{
2 KUISystem pSystem = new KUISystem();

Actor pPlace1 = pSystem.createPhysicalActor("Place1", null);
4 Actor pActor1 = pSystem.createPhysicalActor("ctor", pPlace);

6 Viewer pView1 = pSystem.createViewer(pPlace1, 4);
Observer pObserver = pSystem.createObserver(pView1,

8 new MySituationManager());
...

10 }

Listing 5.1: How to create entities using the KUI system

5.3.3. Ports

The concept of port is used for communication between entities. As explained in the
generic model ports are the interface between the computational and the coordination
parts of the programming language. They are described by port descriptors. The de-
scriptor contains all relevant properties of a port such as:

� ID : a unique identi�er

� Name : the name of the port used for port matching

� Orientation : input, output or in-out

� Synchronization type : asynchronous or synchronous communication

� Delivery protocol : FIFO, causal or total ordering of messages

� Publicity : �ag if the port is public or private

� Address : some of the public ports need an additional address e.g. TCP-based
ports

Attributes are used to match two ports and create couplings between them. Once a
coupling is created a communication channel is implicitly set and the connected entities
are able to exchange information.

The basic communication concept implements the writing and reading of messages (�gure
5.5). The reading and writing depend on the port orientation: input, output or in-out.
The input only allows reading of messages sent by other entities. The output restricts
the port behavior in the opposite way. The port is only able to send messages to others.
The in-out orientation allows communication in both directions.

The coordination language provides several interfaces and classes to create, access and
manipulate ports.
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Figure 5.5.: Shows the sending and receiving part of the communication using ports.

Interface - IPort

The interface IPort is used to hide the di�erent port implementations from the com-
putation. Any computation thread can use this interface to exchange information with
other entities. The interface de�nes the following methods:

� peek(): reads a message from the communication channel without removing it.
The method does not block and returns null if no message is available.

� read(): reads and removes a message from the communication channel. The
method does not block and returns null if no message is available.

� readBlocked(): reads and removes a message from the communication channel.
The blocked reading will wait until a message becomes available or aborts if the
channel is closed.

� write(): sends a message to another entity

� open(): opens a port explicitly. In general ports are opened implicitly by the
coordination manager. The open method takes the communication channel as an
input parameter.

� close(): explicitly closes the connected channels. This method is implicitly called
by the coordination manager if the communication between two ports ends.

Port Classes

The class diagram (�gure 5.6) shows how the ports are de�ned. The current coor-
dination language provides only asynchronous ports. There exist several concrete port
classes:

� InputPort : port to only read messages

� OutputPort : port to only write messages

� InOutPort : port to read and write messages

The existing set of ports can be extended by adding new ports with di�erent behaviors.
For instance, synchronous ports can be implemented by extending the abstract port
class TAbstractPort. The following list shows how the interface can be used by the
computational part of the application.

1 class MyAgent extends Thread
{

3 private InputPort m_pInPort = new InputPort();
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Figure 5.6.: Port implementation of the coordination library.

private OutputPort m_pOutPort = new OutputPort();
5

public void run()
7 {

IMessage pMessage = pInPort.read();
9 ...

pOutPort.write(new TextMessage("Hello World"));
11 }

}

Listing 5.2: Creating ports within an entity.

5.4. Coordination Component

Communication is the main activity between software entities. Therefore the goal of the
coordination component is to manage the communication between entities. It takes care of
the mediation between communication channels. Channels are the managed dependency
and they are created by matching the ports of entities. The coordination component im-
plements the di�erent coordination processes needed for the desired information exchange
between the entities.

The central object of the coordination component is the coordination manager (CM)
(�gure 5.7). The manager implements the main API of the coordination layer. The API
allows the coordination to be used in an explicit way. The API is used to:

� �nd ports and entities within the system

� create port couplings using the matching algorithm

� remove and clean unused port couplings

� start and stop services

� evaluate rules

Three databases are used inside the coordination component. The �rst is an entity-registry
used to �nd an entity by its ID. The entities automatically register themselves here when
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Figure 5.7.: Architecture of the coordination component.

they are created by the system. The second database stores the connection couplings,
which includes the two ports connected to each other and the mediated communication
channel. The last database is used to manage the public ports (services). It keeps track
of which services are enabled or disabled for speci�c entities.

In addition to the database layer three components help to manage and coordinate the
data stored in the databases.

� Port Matching helps to match ports and to create new port couplings

� Rule Evaluation is used to check the rules and generate actions (section 5.6)

� A set of prede�ned coordination actions to coordinate the system (section 5.6)

5.4.1. Port Matching

The port matching process checks if two ports are compatible for communication. As
described in the generic coordination model (section 10) the matching is based on primary
and secondary port features.

The following matching criteria are implemented in the current version of the coordination
language:

� The orientations must be inverse for in and out, or equals to in-out

� The names must be equal

� The communication structures (peer-to-peer, broadcast, etc.) and the synchroniza-
tion types (synchronous or asynchronous) must match exactly

� There must be a free connection to the port. Some ports allow only one channel to
be connected, others might allow multiple channels.

� The protocols must be compatible
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The port matching also decides the type of channel to be created in order to meet the
communication goals. The current version provides only two di�erent types of communi-
cation channels:

� LocalQueueSpace : a locally installed FIFO queue. Typically a shared memory or
�le is used to store the messages.

� RemoteQueuedSpace : socket based communication channel using the Transmis-
sion Control Protocol TCP. Since TCP is reliable in terms of out-of-order delivery,
it is used as a FIFO queue between remote systems.

In the future the coordination language can be extended with other communication chan-
nels, implementing other delivery protocols like priority sending, causal order or total
order.

5.4.2. Message Passing Protocol

We have seen that the communication between entities is realized through channels.
Each channel implements its own strategy to pass messages and to organize the commu-
nication. This section explains the message passing protocol and the di�erent strategies
for passing messages between entities.

The message passing protocol is a generic communication protocol used to exchange
messages between two or more entities. There exist two main classes of message passing:

� Local message passing : local passing is very e�ective for parallel and local com-
puting because it minimizes the thread synchronization and uses local memory to
store messages

� Remote message passing : remote message passing allows the exchange of mes-
sages between distributed computing systems through a computer network

Remote and local message passing are fully transparent when communicating through
ports.

Message

The message is the basic object to transmit information. A message contains a header
and a body. The header includes various �elds, like:

� Sender ID : identity of the message sender

� Recipient ID : list of the recipient ID's used for identi�ed communication

� Time stamp: a logical time stamp to check which message is sent before another
one. Only the partial ordering is implemented using Lamport clocks.

� Properties : list of customer properties. A property is made up of a key-value pair.
The number of pairs is unlimited.

The body is variable and is de�ned by the concrete message classes. The coordination
library provides the interface IMessage and an AbstractMessage class which implements
the header part (�gure 5.8). A few message classes are o�ered by the library:

� TextMessage : the body is a single string containing textual information
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Figure 5.8.: Messages classes of the message passing protocol.

� ObjectMessage : the body contains a streamable object

The object message must be streamable (including all objects added to the body). This
ensures that the message can be sent through all types of channels, in particular channels
to remote systems which often only support byte streaming.

Port Coupling

There are two main strategies for passing messages between entities:

� Anonymous message passing

� Identi�ed message passing

For anonymous message passing the entity sends its message throughout the output port
not knowing who is getting the message. The simplest way to do this is to install a per-
manent coupling. The strategy is to create and manage a communication infrastructure
using the computational part or by evaluation rules. The recipient header �eld of the
message is not needed and can be set to null. The big advantage is that the entities don't
have to know each other.

Identi�ed message passing is more dynamic. Before sending a message the entity puts
all recipients ID's into the recipient header �eld of the message. As soon as the message
is sent through the output port a communication structure is created temporarily. The
necessary couplings are created immediately between the output port of the sender and
the input ports of recipients. After sending the message the coupling is released and the
communication channel removed.

The current version supports only permanent and temporary communication channels.
In future versions the notion of expiration could give more �exibility to the use of the
communication infrastructure.
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Figure 5.9.: Layout of a public service provider.

5.5. Service

Services are realized as a composition of a service object and a public port which
provides the service to outstanding entities. This public port is called a service provider
and allows remote entities to communicate with the service.

5.5.1. Service Provider

A service provider is a specialized public port which is dedicated to providing services to
other entities. The service provider listens to a public port for incoming requests (�gure
5.9). If a client requests a service (1) and is accepted by the service provider port, a
new session is created (2). The service session is private and controls the communication
between the service client and the service object (3). The current coordination language
de�nes only TCP-based service provider ports.

5.5.2. Service Client

The service client port is the counterpart of the service provider. A client port must
be attached as a public port to an actor. The actor puts the client port into its port
list. Once the matching process of the coordination manager matches all of the actors
available ports, the clients are implicitly connected to the available services. The actor is
normally not used to exchange data through the client port. Dedicated applications on
top of the middleware access the client port and exchange their data and requests with
the service (�gure 5.10).

But how can a client �nd services in a smart environment? There exist di�erent tech-
niques for �nding a service within an environment. The pervasive middleware provides a
monitoring component (�gure 5.1). The monitoring helps to detect mobile entities within
an environment. Once a mobile device is detected and accepted it will periodically receive
a list of available services. Each time a new service is provided to the mobile device the
coordination manager tries to �nd a matching client. If a service disappears the client is
automatically disconnected.
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Figure 5.10.: Service architecture

The list of available services for each entity is received from the service registry. The
registry keeps track of all enabled services for each entity. Services are enabled and
disabled using the methods enableService() and disableService() of the ServiceRegistry
singleton.

A lean monitoring example is explained through the case study in the chapter 6.

5.5.3. Service Message Protocol

Each service can use its own message protocol. The protocol governs the data exchange
between the service object and a service client application. We distinguish between two
di�erent protocols. The �rst is called the basic service protocol. It implements the basic
rules for service communication. More details about the insight of the basic protocol can
be found in the appendix of this document. The second and more interesting protocol is
called the speci�c service protocol. This protocol must be de�ned by the programmer of
the service and controls the data exchange between the serverside service and the client
application (�gure 5.10).

5.5.4. Creating a Service

A service object must implement the interface IService. The interface de�nes the
method process(). The incomming message and the querying type are passed as argu-
ments. Following querying types are de�ned:

� etRead : reads data from the service object

� etReadBlocked : reads data from the service object. The call should be blocked
until data is available.

� etPeek : peek of data instead of reading

� etWrite : writes data to the service object

� etWriteRead : writes data to the service �rst and then reads a result

The following example shows the simple HelloService.

import ch.unifr.coordination.structure.interfaces.IService;
2 import ch.unifr.coordination.structure.interfaces.EServiceQueryType;

4 public class HelloService implements IService
{

6 @Override
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public IMessage process(IMessage pMessage, EServiceQueryType eQueryType)
8 {

return new TextMessage("Hello world!");
10 }

}

Listing 5.3: Creating a service

A service can be started using the coordination manager. It is automatically registered
by the coordination manager.

1 import ch.unifr.coordination.CoordinationManager;
...

3 {
CoordinationManager.getInstance().startTCPBasedServer("MeetingService",

5 9901,
new MeetingService());

7 ...
}

Listing 5.4: Starting a TCP based server

On the other side a matching client must be developed. The client must implement the
IServiceClient interface. A service client must be attached to a physical entity.

1 ...
{

3 MeetingServiceClient pMeetingClient = new MeetingServiceClient(new PortDescriptor(
UUID.randomUUID(),

5 "MeetingService", ""));

7 m_pActorEntity.attachPort(pMenuClient);
...

9 }

Listing 5.5: Create a service client port attached to an entity

It is also possible to manually connect a client to a service. For instance the TCBBased-
ServiceClient class provides a static method to create and connect a client directly to the
service:

...
2 {

PortDescriptor pDescriptor = new PortDescriptor(UUID.randomUUID(), "MyClient", "
10.1.0.1:9000");

4

TCPBasedServiceClient pClient =
6 TCPBasedServiceClient.createConnectedClient(pDescriptor, pActor);
}

Listing 5.6: Connect a service client manually

More details about the service architecture and the implementation are put in the ap-
pendix section A.1 of this document.
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Figure 5.11.: Forbidden and accepted list concept of activity rules.

5.6. Rule

Rules are an important concept in coordination. They often logically describe certain
circumstances and conditions and help to govern the system by generating actions. Rules
are needed for various tasks. For instance they help to check if an activity is allowed or
forbidden within an environment. We call this type of rule an activity rule. Rules also
help to to analyze the situations of entities. Situation rules help to generate complex
situations out of the context and the activity of an entity. For coordination the social
rules are the most important ones. They help to govern the social and interactional
behavior of entities.

5.6.1. Activity Rule

Activities are evaluated using rules. The activity of an actor is checked by the activity
rules of the actor's parent (place).

There exist three statuses for activities: accepted, forbidden and negotiable activities
[BH09]. The status is stored within the recognized activity. The activity rules are de�ned
at the level of the actors. Each actor contains a list of all accepted activities and a list of
all forbidden activities (�gure 5.11). All activities which are neither one of the two lists
are stated as negotiable activities.

5.6.2. Situation Rule

Situation rules check the activity and the context of an actor and evaluate its situation.
Since the situation depends on the point of view of an observer the situation status is
evaluated by the observer. A situation manager can be attached to each observer. Each
application observing the entity space must provide a dedicated situation manager imple-
menting the reasoning on situations [Lok04]. The manager takes care of the evaluation
and contains all situation rules necessary to produce the situation status.

Situation rules are not directly used by the coordination management, but help the perva-
sive application react to critical states. The situation status helps a pervasive application
be as unobtrusive as possible. This behavoir is also called calm computing [Wei91]. The
current language knows three situation states:
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� Normal : the situation of an entity is normal. No necessity to bother the entity
(calm and unobtrusive).

� Potentially Dangerous : the situation of an entity might be dangerous. The
pervasive system might warn the entity.

� Critical : the situation of an entity is critical. The pervasive system noti�es the
entity and might also inform other entities.

Situation Manager

A situation manager must implement the interface SituationManager which de�nes one
method called checkSituation(). This method must return the situation status of an entity.
The situation status is an object containing the level (normal, critical or dangerous) and
description of the situation.

1 {
import ch.unifr.umove.observation.situation.SituationManager;

3 import ch.unifr.umove.observation.situation.SituationStatus;
...

5 public class MySituationManager implements SituationManager
{

7 @Override
public SituationStatus checkSituation(Actor pActor, Actor pPlace)

9 {
SituationStatus pRetval;

11

//Implement the rules here
13 if (...)

{
15 pRetval = new SituationStatus(SituationLevel.CRITICAL, "Is in danger");

}
17 ...

19 return pRetval;
}

21 }

Listing 5.7: Creating a situation manager

The situation manager must be directly attached to the observer.

1 {
KUISystem pSystem = new KUISystem();

3 ...
Observer pObserver = pSystem.createObserver(pView1,

5 new MySituationManager());
...

7 }

Listing 5.8: Creating an observer and attaching the situation manager

5.6.3. Social Rules

The social rules control the interaction and social relations between entities. The rules
are checked by the entity if the context or activity of the entity has been changed.
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Figure 5.12.: Rule evaluation using rule and action interfaces.

The coordination language implements the social rule model proposed by the generic
coordination model:

� Sub-entities inherit the rules from their parent entities

� Sub-entities can overwrite and extend the rules given by parent entities

� The evaluation checks the rules and controls the system

The rules are evaluated by the RuleEvaluator. The evaluation generates a list of actions
which are the consequences of violated rules (�gure 5.12). The actions typically perform
coordination work within the system such as:

� Controlling the interaction : for instance if a human enters a building equipped
with a smart environment the human automatically gets access to provided services.
The interaction can also be terminated. For instance if an employee enters a meeting
room, depending on the rules some services like SMS are blocked.

� Managing social groups : social rules also help to create or change social groups

The current version of the coordination language evaluates the rules on the level of actors
and directly executes the actions afterwards. In the future the rules must be evaluated
on the observer level. The actions should not directly be executed because the observer
might negotiate the actions with other observers (chapter 7). This could lead to a more
consistent system if two or more observers are evaluating rules and produce contradictory
actions.

The concept of rules and actions is very powerfull. It allows to extend and customize the
system for any needs. How rules and actions are de�ned and added to the environment
is shown in the following sections.

Rule Classes

The rules must be de�ned by the system engineer. The rule classes have to implement
the IRule interface, which provides the following methods:

� check(): checks if the rule is respected. It must return an action object if some
changes must be done.

� getName(): returns the name of the rule. The name is used to identify the rule.

� isFinal(): if a rule is �nal it cannot be overwritten by sub-entities
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The inheritance of rules is done via their names (id). If an entity en-1 is the parent entity
of en, the rules for the sub-entity en are merged in the following way:

� Let Rn-1 be the set of rules of en-1 and Rn be the set of rules of en.

� Then the rule merging ] of the two sets Rn-1 and Rn is de�ned as

Rn−1 ]Rn = Rxy(Rn−1, Rn) ∪Rx(Rn−1, Rn) ∪Ry(Rn−1, Rn) (5.1)

where as Rxy returns the set of all rules which occur in the set Rn-1 and Rn but don
not have the same identity:

Rxy(Rn−1, Rn) = {x ∈ Rn−1; y ∈ Rn : id(x) 6= id(y)} (5.2)

Rx returns all rules from the parent entity en-1 which are �nal and can not be
overwritten by the sub-entity:

Rx(Rn−1, Rn) = {x ∈ Rn−1 : ∃y ∈ Rn : id(x) = id(y) ∧ isF inal(x)} (5.3)

and Ry returns all not �nal rules which are overwritten by the sub-entity en

Ry(Rn−1, Rn) = {y ∈ Rn : ∃x ∈ Rn−1 : id(x) = id(y) ∧ ¬isF inal(x)} (5.4)

The merging operator ] is applied to all ancestors of en. The merging starts with the
root entity e0 and the �rst ancestor e1. The result is then merged again with the second
ancestor e2 and so on, until the level of en is reached. At the end a completly merged rule
set Rmerged to evaluate en is received. This set is then passed to the rule evaluator.

Rmerged = (((R0 ]R1) ]R2)... ]Rn) (5.5)

Action Classes

All actions must implement the IAction interface. The interface provides only one
method called execute(). The coordination languages proposes few actions, like:

� EnableServiceAction : enables a service for the entity. The entity is capable of
connecting to a service provider port.

� DisableServiceAction : the entity is disconnected from a service

Nevertheless the system engineer can design new actions in order to coordinate the system.
The coordination language can be extended and customized easily in this way.

Implementing a customized Rule

The following example illustrates how a customized rule is implemented. The rule
checks if the temperature of an entity is lower than zero. If this is the case the service
MyService is disabled. Otherwise the service is enabled. The two actions are provided
by the coordination component and dedicated to enable or disable services.

{
2 import ch.unifr.coordination.rules.interfaces.IRule;
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Figure 5.13.: Action classes

import ch.unifr.coordination.actions.DisableServiceAction;
4 import ch.unifr.coordination.actions.EnableServiceAction;
import ch.unifr.umove.espace.actor.Actor;

6 import ch.unifr.umove.espace.contexts.Temperature;
...

8

public class MyRule implements IRule
10 {

@Override
12 public IAction check(IEntity pEntity)

{
14 IAction pRetval = null;

if (pEntity instanceof Actor)
16 {

//Evaluate the context and activity and generate a rule
18 Actor pParent = (Actor) pActor.getParentEntity();

Temperature pTemperature = (Temperature) pActor.getContexts().getContext(
20 "Temperature");

22 if (pTemperature == null || pTemperature.getTemperature() < 0)
{

24 pRetval = new DisableServiceAction(pEntity, "MyService");
}

26 else
{

28 pRetval = new EnableServiceAction(pEntity, "MyService");
}

30 }
return pRetval;

32 }

34 @Override
public String getName()

36 {
return "MyRule";

38 }

40 @Override
public boolean isFinal()

42 {
return false;

44 }
}

46 }

Listing 5.9: Creating a customized rule

The rule is attached to the environment. All entities staying within this environment
have to follow this rule afterwards.

1 {
...

3 KUISystem pSystem = new KUISystem();
Actor pPlace1 = pSystem.createPhysicalActor("Place1", null);
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5

//Add all rules here
7 pPlace1.addRule(new MyRule());

...
9 }

Listing 5.10: Attaching a rule to an environment

Implementing a customized Action

The collection of actions can be customized too. The next example shows how an ac-
tion can be implemented. The action class MyAction must implement the the IAction
interface.

{
2 import ch.unifr.coordination.actions.interfaces.IAction;
import ch.unifr.coordination.structure.interfaces.IEntity;

4 ...

6 public class MyAction implements IAction
{

8 public MyAction(IEntity pEntity)
{

10 m_pEntity = pEntity;
}

12

@Override
14 public Retval execute()

{
16 Retval retValue = Retval.RET_REQUEST_FAILED;

//TODO: place the coordination code here
18 ...

return retValue;
20 }

22 private IEntity m_pEntity;
}

24 }

Listing 5.11: Creating a customized action



6
Case Study: Tracking of Entities

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Layout of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.1 Server Application . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Mobile Application . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 KUI Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 Message Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5.1 Context Change . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5.2 Location Change . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1. Introduction

In pervasive computing it is essential to track mobile entities in order to update their
contextual information and to exchange information between server and mobile applica-
tions. This case study shows how the tracking can be done using the uMove framework
together with the coordination module. The focus is to integrate mobile entities into a
server based entity space which provides pervasive services to them (smart environment).
A mobile entity is typically a human equipped with a mobile device.

In a concrete example we show that a mobile device is able to get two services from the
smart environment:

� Meeting service : the meeting room is equipped with a meeting service which
provides information about current and future meetings. As soon as a human
enters the meeting room he will receive the information on his mobile device.

� Menu service : the menu service provides information about the current menus
served in the cafeteria. If a human is entering the cafeteria he will receive the menu,
but only if he is not running.

Those two services are coordinated using simple rules. Whereas the meeting service
depends only on the location of a human, the menu service takes also activities into
consideration.
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Figure 6.1.: Setup of server and mobile application

6.2. Layout of the System

The implementation of the tracking system is split into two applications, the server
and the mobile application (�gure 6.1).

� Server application : the server system enriches an environment with pervasive
services. This environment is called a smart environment.

� Mobile application : the mobile application runs on a mobile device, using em-
bedded sensors. It observes the human and provides contextual information to the
smart environment.

Both systems are based on the pervasive middleware framework, especially the uMove
framework to represent the world, the coordination component to manage the communi-
cation and the monitoring to detect mobile entities (human, mobile devices).

6.2.1. Server Application

We extended an existing pervasive application, called Robin [BLLH10] as a server
application which was a case study to show how uMove is used to build activity based
pervasive applications. The main extension is the implementation of the concept of
services (�gure 6.1). The server provides three services to mobile entities:

� KUIService : is part of the uMove framework and allows mobile entities to be
identi�ed and integrated in the KUI system.

� MenuService : the menu service is an application-speci�c service. It provides menu
information from a cafeteria.

� MeetingService : the meeting service is an application-speci�c service too. It
provides information about the meeting schedule of a meeting room.

Two rules are attached to the �oor to coordinate the services:
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Figure 6.2.: Server application. The blue dots show currently tracked entities. The �gure
is modi�ed to improve the printout.

� Meeting Service Rule : this rule governs the meeting service. As soon as a mobile
entity enters the meeting room, the service client is automatically connected to the
meeting service. The mobile entity will receive the current list of meetings.

� Menu Service Rule : this rule governs the menu service. The rule considers not
only the location of a mobile entity but also heir activity. The mobile entity will
receive the menu if it is inside the cafeteria and the activity of the human is walking.
If the human is in a hurry (running) he will not receive any menu information.

No rules are needed for the KUI Service because this service should be always available.
The server provides a graphical user interface which shows the layout of a building (�gure
6.2). Three rooms are con�gured on the 4th �oor: a Meeting Room (A403), a Cafeteria
(A404) and an o�ce A405. All tracked mobile entities are represented as dots at their
current location.

6.2.2. Mobile Application

The mobile application runs on the mobile device. If the human waering the mobile
device enters a smart environment, the application automatically connects to that en-
vironment. To be able to identify the mobile device in the server application, a special
attention has been given to connection algorithm. It must be able to connect or reconnect
the device when a server is retected and disconnect properly when the device is out of
range (e.g. leaving the building).
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a: b: c:

Figure 6.3.: The three main screens of the mobile application. The �gures are modi�ed
to improve the printout.

We use the Motorola Milestone as mobile device. It is equipped with the Android OS
and a Android Java Platform which is compatible with the Java Standard Edition. This
allows us to develop a mobile application using the same pervasive middleware as we use
for the server application. How to setup a mobile device with the pervasive middleware
is explained in the appendix B.

We apply a two level scanning to handle the connectivity. The �rst level is the lookup
for a smart environment using the monitoring component (section 6.3). Once a smart
environment is found the client and server exchange service availability information. Co-
ordination is then used to connect to new services becoming available or to disconnect
services if they disappear. The tracking starts when a mobile entity enters the area cov-
ered by a smart environment. A login process starts. The mobile device �rst sends the
login information such as the user name and the password (if needed). If the smart envi-
ronment accepts the mobile device it sends the available services to the device. As long
as the mobile device stays within the covered area it is tracked by the smart environment
and gets updates of the available services.

A small graphical user interface has been also developed. The main screen shows the
available smart environments (�gure 6.3a). When the Start button is pressed the device
starts scanning for smart environments. The Stop button can be used to explicitly discon-
nect from all smart environments. In regular operation the device disconnects implicitly
from the environment if it is out of range, for instance when leaving the building.
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The Smart FrontEnd button switches the screen to the front end used to receive infor-
mation from services (�gure 6.3b). Since the rooms are not equipped with Bluetooth
dongles or RFID's we added a small Bluetooth simulator. The three buttons can be used
to change the location between the three rooms. Below the small simulator a service
message appears depending on the situation of the actor (context, location and activity).

Once a smart environment is detected it is shown on the main screen. When a smart
environment is selected the service screen appears (�gure 6.3c). This screen is used to
check the availability of services and is mostly used for debugging or de�ning rules.

6.3. Monitoring

For the entity tracking a lean monitoring component had been created. The monitoring
helps to connect mobile devices to the smart environment implicitly.

The scanning is the most essential part of the lean monitoring implementation. The
mobile device broadcasts a ping message over a WiFi interface (�gure 6.4a). The ping
message contains the open listening port for any echos. If a smart environment is close
by it responds to the ping (�gure 6.4b). The echo message contains the public port
address of the main service from the smart environment. This service is used to log in
and integrate the mobile device into the smart environment. Once the device is accepted
a permanent communication channel is installed (�gure 6.4c). Through this channel
the service provides information about the environment such as other available public
services. On the other hand the mobile device can provide its mobile services to the
smart environment as well enriching the environment with new functionalities. If the
mobile device is out of range or disconnected on purpose, the connection is reset (�gure
6.4d). Because the scanning of the mobile device is running permanently the mobile
device is automatically reintegrated as soon as it is in the range of the smart environment
again.

The mobile device is able to connect itself to multiple smart environments at the same
time. This happens if two environment networks overlap in a certain area, like for instance
if a city is equipped with a smart city environment and the user is close to a train station,
which also has its own smart environment. In this case the mobile device uses some
services provided by the city and some services provided by the train company.

The implementation and class diagrams are put in the appendix section A.2 of this
document.

6.4. KUI Service

The KUI Service manages the integration of a mobile device into the entity space of
the smart environment. This integration is realized by the creation of a stub entity which
represents the actor of the mobile device in the server (smart environment) (�gure 6.5).

If a new mobile entity enters the smart environment and connects to the KUI Service
all relevant information is sent to the server. According the the service implementation
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Figure 6.4.: Monitoring of mobile devices.

of the coordination library a private KUI Service session takes care of the client-server
communication. Each time the actor receives new contextual information or changes
activities the messages are also passed to the stub through the client-server connection.

If the mobile device leaves the smart environment the stub entity is removed from the
entity space of the smart environment and all communication channels are disconnected.

This architecture allows the mobile device and the designated mobile applications to
be independent of the smart environment. On the other hand the server applications
can provide context-aware services to the mobile device. The stub also helps to reduce
the communication between the smart environment and the mobile device. If a server
application is querying information about the actor it communicates only with the stub
and gets the context of the stub. The stub is fully transparent to the server application.

6.5. Message Flow

This section explains the two major message �ow implementations between a mobile
device and the server. The �rst example shows how a simple context change (e.g. tem-
perature, motion) is managed. The second example illustrates the location change of a
mobile entity within a smart environment.
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Figure 6.5.: Mobile device integration into entity space of the server using the KUI Service

6.5.1. Context Change

As shown in �gure 6.6 any context change of an entity starts at the sensor level. For
instance the temperature sensor reads a new temperature value and sends the it to the
actor (1) which stores it in his context. Then the actor generates two messages. The �rst
message is sent to the observer which observes the actor on the mobile applications (2.1),
(3.1) and (4.1). The second message is sent to the KUI Service client (2.2) which passes
the message through the network to the KUI Service session (3.2). For any context change
the message is directly passed to the stub of the actor (4.2) which actualizes his context
too. Afterwards the change is reported to the viewer, the observer and �nally to the
server application (5.2), (6.2) and (7.2). In parallel the attached rules are evaluated (5.3)
and the necessary actions are executed a�ecting the service registry (6.3). For instance a
service might be not available anymore for mobile devices. The smart environment client
on the monitoring level queries periodically for service changes. The smart environment
session reads the current state of the service registry (7.3) and sends it to the client (8.3).
The client itself will recheck and update the availability of services locally and if a service
becomes available tries to connect to it. On the other hand if a service disappears the
client will disconnect the associated service client (9.3). Finally the application gets the
state changes of the connected services (10).

6.5.2. Location Change

The uMove implements two strategies to detect the location of an entity:
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Figure 6.6.: Message �ow of a simple context change

� Active Detection : the entity (for instance a mobile device) is capable to localize
himself. A sensor attached to the entity detects and processes a location change. Ex-
amples are GPS, local positioning using WiFi or bluetooth. In the case of bluetooth
tag for instance, it is the zones which are tagged and the mobile entity processes
the tag number and gets the corresponding location.

� Passive Detection : the entity wears a tag only. The position of the entity is
detected by sensors placed within the environment. Examples are the tracking of
letters, goods using RFID or the opening of doors using a badge.

The case study uses the active detection which is more complex and must be solved using a
proper entity-stub architecture. The location change starts in the same way as the simple
context change. Since the structure is unknown on the mobile device, a location change
can not be treated completly and must be handled as a simple context change (�gure
6.7). An unknown location change message is sent to the KUI Service session (3.2). Here
the message can not be passed directly to the stub-entity, because the message contains
only raw information like a GPS position or a RFID-tag. The corresponding location
must �rst be found by a virtual location sendget (4.2) using the entity ID registry (5.2).
Once the location is found a location change message is sent to the stub-entity (6.2) which
manages the location change. Three entities are involved in this process, the stub-entity
representing the actor in the server side, the previous parent entity (old position) and the
new parent entity (new position). Finally the following steps are done for each of this
three entity:
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Figure 6.7.: Message �ow of a location change

� Updating structure, noti�cation of viewer, observer and application (7.2), (8.2) and
(9.2)

� Evaluation of attached rules (7.3) and update of the service registry if needed (8.3)

� If the entity is mobile and is integrated into the smart environment dynamically,
the client side will get an update of the availability of services (9.3) upto (12.3)
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7
Conclusion

7.1. Contribution

Coordination is already a wildly discussed topic on which many paper have been pub-
lished. As a whole this thesis addresses the coordination model for pervasive systems.
We chose the systemic point of view to create our model to meet the complexity of the
real world. We have introduced several topics connected to coordination, like a holistic
physical model, activity theory and dependencies between entities. We have drawn a
picture of a coordination model which includes the coordination aspects of the generic
coordination model XCM [TCH05], but based on the connected topics we have unearthed
new aspects like:

� Activity and task structure

� Observation of entities by observers using viewers

� Relativity of observation in time and space

� Subjective entity classi�cation

These aspects were integrated into our holistic and generic coordination model. The
systems we coordinate are based on the model of systems developed by Bruegger et
al. [BH09]. They consider a system as an integrate whole, living and open, made of
actors, observers and viewers. They evolve over time. In such dynamic systems, activies
and tasks of the actors are taken into consideration and require an important level of
coordination. To adequately do this coordination, it is required to have a reliable activity
recognition.

The concept of observation is an other major extension of the XCM. Coordination is
related to an observer perceiving information about the current state of a system. We
showed that the perception is always relative to the point of view of an observer. This
comprehension led to concept of relative observation (depending of the point of view).

We have also introduced a more speci�c coordination model for pervasive computing
based on the generic coordination model. We showed how coordination is realized in
computer science in general and more speci�cally for pervasive computing systems.

Based on the coordination model for pervasive systems we came up with a coordination
language. The language is implemented as a Java library providing coordination func-
tions. It is part of our pervasive middleware made of uMove and coordination libraries

86



7.2. Future work 87

which �lls the gap between the di�erent operating systems participating in a smart envi-
ronment and the pervasive applications. The language is used to de�ne and coordinate
the physical and virtual structure, rules, actions and the communication between entities.

The case study was developed with uMove and the Coordination library and demonstrate
how entities are tracked inside a smart environment. It allows the integration of a mobile
entity into a smart environment and provides pervasive functionality to the mobile entity.
Special attention has been given to the connectivity and the implementation of the con-
cept of services. The coordination is illustrated using two pervasive application services,
the menu service providing a menu of the cafeteria and the meeting service providing a
meeting schedule. These services are coordinated by the smart environment and become
available or not to mobile entities depending on their contexts and activities.

7.2. Future work

The project of the coordination model for pervasive computing does not end with this
thesis. This thesis uncovered many open research �elds which the PAI research group
intends to answer in a future master thesis or doctoral dissertations. We have identi�ed
some of them:

Rules The concept of rules is an important instrument to govern and control coordina-
tion. In our model we brie�y explained how rules can be de�ned. Observers evaluate the
rules and take actions to coordinate activities. A system can have more than one observer
producing actions for coordination. We experienced that actions from di�erent observers
can create a con�ict with other actions (one is undoing something the other just did).
This question must be studied in order to avoid such con�it and garanty always a smooth
coordination of coherent actions.

The current language implements the rules as Java classes. We need a more �exible way
to adapt and allow rules to evolve. Observer should be able to change them as described
in subjective coordination.

Activities In this thesis we concentrate on communication as the major activity be-
tween entities and our coordination is limited to manage the communication between
them. As mentioned in chapter 4, human activities can be coordinated using specialized
tools. Nowadays these tools are not pervasive. All activities must be entered and planed
by human users (e.g. using project management application). A top level pervasive coor-
dination could help to dynamically and implicitly coordinate the work of humans working
together. Our system already detects activities by analyzing the motion of entities. This
together with the existing planning tools would help to support humans in their daily
collaboration with others. Further, the system could be help to improve and control
business processes in a more implicit way.

Pervasive Services Pervasive services are an essential part of a smart environment. Our
coordination language provides just a simple service architecture. Sergio Ma�oletti in
[Maf04] proposed a pervasive service framework called UBIDEV. Because many aspects
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of the Sergio Ma�oletti's dissertation have not been reevaluated in the new coordina-
tion model, we believe that a comparison between these two models and possibly the
integration of Ma�oletti's concepts into our new model could be interesting and useful.



7.2. Future work 89



A
Implementation of Coordination

Language

A.1. Service Architecture

This section explains the architecture and implementation of services. The service ar-
chitecture is de�ned in several layers (�gure A.1). The �rst layer de�nes the ports and the
message passing between them. The second layer implements the basic service protocol
which controls the communication on the service level. The third layer implements the
TCP based communication using the TCP/IP protocol. Finally the last layer implements
the application speci�c service protocol and the functionality of a service.

The major classes are brie�y introduced:

� IServiceClient : the interface de�nes the methods of the service client

� IServiceSession : the interface de�nes a communication session for services

� AbstractServiceClient : the abstract service client class implements the basic
service protocol of the client

� AbstractServiceSession : the abstract server class implements the basic service
protocol of the server

� AbstractServiceProvider : the abstract service provider port implements the
management of all connected service sessions

� TCPBasedServiceClient, TCPBasedServiceSession, TCPBasedServiceProvider :
these classes implement TCP/IP based communication between server and client

The communication between client and server is controlled by the basic service protocol.
This protocol implements the login and data exchange between client and server.

� Login Process : implements the login process of a client-server connection

� Data Exchange : implements the data exchange between client and server

The client implements the port behavior and can be handled as a regular port. The port
speci�c methods are overwritten in order to map the call to the basic service protocol.
The server has a passive or reactive behavior. Each call is handled and then replayed to
the client.
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Figure A.1.: Architecture of services

A.1.1. Login Process

The login is done after a client connects to the server (�gure A.2). First a service
session object is created and then the login information are sent. If the session object
accepts the login then a con�rmation is sent back to the client. As a login the client
sends:

� Parent ID : the ID of the parent entity or the client port. This expresses to who
the client port belongs. Normally the parent is an actor.

� Port Descriptor : the port descriptor of the client. The descriptor contains all
information about the client port.

A specialized message type called LoginMessage is used to log into the server. This
message wraps all login information.

A.1.2. Data Exchange

The client also uses the basic service protocol to exchange the data with the server.
Since the client extends the port class, all port methods are mapped to a query type which
is transparently passed to the process() method of the service object on the server side
(subsection 5.5.4). The table A.1 shows all port method calls and their corresponding
query type:

The exchange() is not de�ned within the port interface but is implemented by the Ab-
stractServiceClient. The exchange is a two way communication like read-write.
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Figure A.2.: Login process of services

Port method EServiceQueryType Service Message Protocol

read() etRead In: Query Type
Out: Con�rmation + Data Message

readBlocked() etReadBlocked In: Query Type
Out: Con�rmation + Data Message

peek() etPeek In: Query Type
Out: Con�rmation + Data Message

write() etWrite In: Query Type + Data Message
Out: Con�rmation

exchange() etReadWrite In: Query Type + Data Message
Out: Con�rmation + Data Message

Table A.1.: Service Message Protocol

The basic service protocol is implemented by the ServiceMessage class. The service
message contains �elds for querying and con�rmation type and for an optional data
message. Figure A.3 shows the sequence diagram how data is read from a service.

The current service implementation is intended to be used for querying data. This means
that the client is the active part and start the communication. The server is passive
and reponses to the incomming requests only. As consequence of this behavoir the client
must periodically query the server for information. A server can not directly contact the
clients. But the client can also use the readBlocked() call to avoid a constant polling.
This blocks the client until the server has data to send to the client.
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Figure A.3.: Reading a message from the service

Figure A.4.: Classdiagram of the smart environment service

A.2. Monitoring

This section explains the implementation of the monitoring used in the case study. The
monitoring is realized with two components: the smart environment service provider and
the smart environment client.

Figure A.4 shows the monitoring classes of the server. The PeerProvider class is used
to replay searching signals from mobile devices. The SmartEnvServiceProvider provides
pervasive services to mobile entities. All services are registered in the ServiceRegistry. A
session is created for each client entering the environment which handles communication
and the exchange of the availability of services.

Figure A.5 shows the classdiagram of a mobile device. The mobile device sends signals
out to �nd a smart environment using the PeerFinder. Once the mobile devices �nds
an environment a SmartEnvServiceClient object is created. This object takes care about
the data exchange with the environment, mainly to get the availability of other public
services. The smart environment client manages the connections between application
service clients and the application services of the smart environment. As soon as a new
application service becomes available the corresponding application client is connected
to it. On the other hand if an application service disappears, the corresponding client is
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Figure A.5.: Structure of the mobile device

disconnected immediately. A mobile application receives the connecting or disconnecting
states through the IMobileDeviceObserver interface:

� onEnvironmentFound(): noti�cation if a new environment has been found

� onEnvironmentLost(): noti�cation if the mobile device has been disconnected
from an environment

� onServiceFound(): noti�cation if a service becomes available. The matching
application client port is returned if it has been connected to the application service
automatically.

� onServiceLost(): noti�cation if the application service disappears
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B
Installation of Pervasive Middleware

B.1. Motorola Milestone

The Motorola Milestone is equipped with the Android operation system. The Android
provides a JVM compatible with Java SE. Few modi�cation on the system must be done
in order to install the pervasive middleware of PAI research group.

The proposed setup procedure is explained using the cmd shell of Windows. For Linux
and Mac their shell applications might use other commands.

B.1.1. Setup your PC

� Motorola provides a CD which includes the software and drivers. This must be
installed on your computer. It's needed in order to connect to your phone using the
adb tool later in the setup process.

� Installation of the Android. For future setup you have add the Android tools
directory to the PATH environment variable (Windows).

� Set the environment variables to "{installation of android-sdk-windows}\tools\"
� Test if adb tool is recognized by the console

B.1.2. Change Phone Setting

Before starting with the application development few settings must be changed on the
phone. Open the settings menu of the mobile phone:

� Applications �Development : Enable "USB debugging", "Stay awake" and "Allow
mock locations"

� Sound & Display �Display settings (scroll to the bottom):

� For GUI testing the "Orientation" option might be disabled

� Increase the "Screen Timeout" (depending on your testing purposes)
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Figure B.1.: Motorola MileStone

B.1.3. Getting Root Access

The Milestone comes with Android 2.0 User Build, which does not include the Linux
root access. With this version we are only capable to install pure APK Applications, but
to JAR libraries. So �rst a special update must be installed to get root access to the
phone. According to [8] the version 2.0 should not be updated, otherwise rooting the
system will probably not work anymore. The following procedure was proposed by [12].
Figure B.11 shows the di�erent buttons used in the installing process.

1. Download �rst the �le update.zip2 to the SD-card of the mobile phone.

Use the adb command: > adb -d push update.zip /sdcard/update.zip

2. Turn o� the mobile phone and restart holding the camera button (�gure B.1B)
until the boot screen appears (�gure B.2 left).
To get to the boot menu hold the speaker key for turning up the sound (C)
and then press the camera key again (B). The boot menu will appear (�gure
B.2 middle).

3. Select the update.zip and press enter. You might open the phone using the naviga-
tion keys (�gure B.2 right). There will be an error on the screen saying that it can
not �nd the update_binary. This can be ignored. Root should work after rebooting
the phone.

To test if root is working connect the mobile phone with your PC using USB and start
the adb application.

> adb −d shell <ENTER>
2 \$ su <ENTER>
\#

On the phone a dialog will appear which has to be con�rmed in order to get root access.
There is no password needed though (�gure B.3).

1The quality of the �gures is bad but helpful for the installation procedure
2included on CD-Rom: \03_Implementation\Motorola_Milestone\update.zip
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Figure B.2.: Boot procedure to install an update on the Motorola Milestone

Figure B.3.: Screen showing the root request

B.1.4. Installation of JAR-Libraries

JAR libraries are not accepted by default on Android 2.0. They have to be created
in a special manner �rst. Following instructions must be repeated for all JARs of the
pervasive middleware from unifr3:

� ch.unifr.coordination.jar

� ch.unifr.monitoring.jar

� ch.unifr.umove.jar

Follow the instruction for each library listed above:

1. Compile the JAR using Netbeans or Eclipse IDE. Make sure it is compiled against
the android.jar provided by Android SDK.

2. Generate the �le classes.dex and add it to the JAR-�le using the dx application.
You �nd this application within the android platform folder .\platforms\android-
x.x\tools. Some other examples are given by [6].

1 >dx −−dex −−output=path\classes.dex path\coordination.jar
>cd path

3Namespace of the University of Fribourg
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3 >aapt add coordination.jar classes.dex

3. Use zipalign tool to gain more performance on the mobile phone. Since the phone
is 32bit the align is 4 bytes.

1 >zipalign −f −v 4 coordination.jar ch.unifr.coordination.jar

Once the JAR is prepared we have to download and install it on the mobile device. An
example is given by [10] or [7]. Use following instructions for the Motorola Milestone:

1. Create an XML for permissions called "ch.unifr.coordination.xml" containing the
name of the library and the location on the android system:

1 <?xml version="1.0" encoding="utf−8"?>
<permissions>

3 <library name="ch.unifr.coordination"
file="/system/framework/ch.unifr.coordination.jar"/>

5 </permissions>

2. Extend the platform.xml of the Android platform

� Upload the platform.xml �rst

1 >adb −d pull /etc/permissions/platform.xml myfolder\platform.xml

� Add the permissions-node to the XML:

1 ...
<library name="ch.unifr.coordination"

3 file="/system/framework/ch.unifr.coordination.jar"/>
...

3. Download the JAR-�le and both XML �les to the SD-card of the phone

>adb push ch.unifr.coordination.jar /sdcard
2 >adb push ch.unifr.coordination.xml /sdcard
>adb push platform.xml /sdcard

4. Now install the �les on the SD-card to correct folder on the Android platform:

� Login to the console as root

1 >adb −d shell
\$ su

3 #

� Since the folders /system/framework and /etc/permissions system are write
protected the �le system must be remounted with read-write permissions. Note
that the remounted block might be di�erent for other phones. Type the mount
command without parameters to receive the current mounting.

1 #mount
rootfs / rootfs ro 0 0

3 tmpfs /dev tmpfs rw,mode=755 0 0
devpts /dev/pts devpts rw,mode=600 0 0

5 proc /proc proc rw 0 0
sysfs /sys sysfs rw 0 0

7 tmpfs /sqlite_stmt_journals tmpfs rw,size=4096k 0 0
none /dev/cpuctl cgroup rw,cpu 0 0

9 /dev/block/mtdblock6 /system yaffs2 ro 0 0
/dev/block/mtdblock8 /data yaffs2 rw,nosuid,nodev 0 0

11 /dev/block/mtdblock7 /cache yaffs2 rw,nosuid,nodev 0 0

� The /system must be remounted:
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1 # mount −o remount,rw −t yaffs2 /dev/block/mtdblock6 /system

� Now we can copy the �les from the SD-card to the system directories:

1 # dd if=/sdcard/ch.unifr.coordination.jar
of=/system/framework/ch.unifr.coordination.jar

3 # dd if=/sdcard/ch.unifr.coordination.xml
of=/etc/permissions/ch.unifr.coordination.xml

5 # dd if=/sdcard/platform.xml of=/etc/permissions/platform.xml

� Because we copied the data as root, the �le rights must be changed to user
access rights.

1 # chmod 644 /system/framework/ch.unifr.coordination.jar
# chmod 644 /etc/permissions/ch.unifr.coordination.xml

5. Remount the system with read-only access and reboot the phone.

# mount −o ro,remount −t yaffs2 /dev/block/mtdblock6 /system
2 # sync
# reboot

6. If you work on the PAI projects using Netbeans (such as coordination, umove or
monitoring), download also the install.sh to the phone. The install.sh is used to
automatically update the JARs on the phone.

a) Download install.sh:

1 > adb −d push install.sh /sdcard

b) The build.xml of the projects are adapted to automatically generate the DEX-
�le, create a JAR for Android and download it to the SD-card of the phone

c) To update the JARs run install-jars.bat on your computer (windows)

B.1.5. Using a Library in a APK Project

First the JAR libraries must be added to the project. For netbeans click on the Library
folder of the project and use "add JAR/Folder" in the context menu. The added JAR
libraries must be also declared in the androidmanifest.xml of the project. Add following
line within the application-node:

1 <application android:debuggable="true">
<uses−library android:name="ch.unifr.coordination"/>

3 ...
</application>

If this line is missing the android system can not resolve the classes and methods from
the jar library and will throw an exception of type java.lang.NoClassDefFoundError.

NOW YOU ARE READY TO RUN YOUR PERVASIVE APPLICATION. Have Fun!!
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C
Common Acronyms

ALU Arithmetic and Logical Unit

API Application Programming Interface

ASI Actuator-Sensor-Interface

AST Abstract Syntax Tree

CD Compact Disk

CERN European Organization for Nuclear Research

CM Coordination Manager

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

FIFO First In - First Out

FTP File Transfer Protocol

GPS Global Positioning System

HTML Hypertext Markup Language

HCI Human Computer Interface

KUI Kinetic User Interface

ID Identi�er

IDE Integrated Development Environment

IO Input-Output

IP Internet Protocol

JVM Java Virtual Machine

MAS Multi agent system

MMU Memory Management Unit

MPI Message Passing Interface

MS Microsoft

OS Operation System

OSI Open Systems Interconnection Reference Model

PAI Pervasive and Arti�cial Intelligence research group

PC Personal Computer
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PCI Peripheral Component Interconnect

PCM Pervasive Coordination Model

PDA Personal Digital Assistant (electronic handheld information device)

PLC Programmable Logic Controller

Qt C++ library of Quasar Technologies

RAM Random Access Memory

RFID Radio Frequency Identi�cation

SMS Short Message Service

STL Simple Thread Language for C and C++ (STL++)

TCP Transmission Control Protocol

UDP User Datagram Protocol

USB Universal Serial Bus

UUID Universally Unique Identi�er

VCL Visual component library from Borland

WECA Wireless Ethernet Compatibility Alliance

WiFi Trademark of the Wi-Fi Alliance (former WECA. Used with certi�ed products that
belong to the class of WLAN devices.

WLAN Wireless local area network

XCM Generic Coordination Model for pervasive computing

XML Extensible Markup Language



D
License of the Documentation

Copyright (c) 2010 Benjamin Hadorn.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

The GNU Free Documentation Licence can be read from [5].
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E
Deliverable Products

This chapter gives an overview of the products delivered with this Master Thesis, like:

� A printout of the Master Thesis

� A poster for exhibition

� A CD-ROM Figure E.2 containing the binaries and documents of the Master Thesis

� The source code, compiled binaries and API documents of:

* The coordination component

* The lean monitoring (smart environment monitoring)

* The uMove Framework (Version 2)

� The binaries and sources of this document (LATEX)

� Coordination Models

� Referenced documents and readings used during this Master Thesis

Figure E.1 provides a tree view of the CD-ROM.
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|-- 01_Documentation // Msc Thesis, Appendix, Java Doc

| |-- latex // Latex source of the thesis

| |-- graphics // Graphics used in the documents

| |-- graphics_high_res // Printing version of graphics

| |-- JavaDocCoordinationLib // API of the coordination component

| |-- JavaDocMonitoringLib // API of the lean monitoring

| `-- JavaDocuMoveLib //API of the uMove framework

|

|-- 02_Presentation // presentations of the Msc Thesis

|

|-- 03_Implementation // Implementation of the thesis

| |-- Coordination // Coordination language

| |-- CoordinationMonitor // Coordination monitoring (debugging)

| |-- MobileMonitoring // Lean monitoring implementation

| |-- robin // Server application (robin)

| |-- SmartAppForAndroid // Client application for android

| |-- uMove2 // uMove framework

| `-- Motorola_Milestone // installer for mobile phone

|

|-- 04_References // reference documents

|-- 05_ProjectPlan // Project plan and dead lines

|-- 06_GuideLines // Guideline of the thesis

`-- 08_Images // Various images used in the documents

Figure E.1.: Tree view of the content of the CD-ROM
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Figure E.2.: The CD-ROM of this project
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